Preferred Language
Articles
/
9BfIZZIBVTCNdQwC-a57
Fast Finite-Time Composite Controller for Vehicle Steer-by-Wire Systems with Communication Delays
...Show More Authors

The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 10 2022
Journal Name
International Journal Of Mathematics In Operational Research
Modelling time-series process of an agricultural crop production process by EWMA quality control chart
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Feb 13 2020
Journal Name
International Journal Of Environmental Research
Synthesis of a Novel Composite Sorbent Coated with Siderite Nanoparticles and its Application for Remediation of Water Contaminated with Congo Red Dye
...Show More Authors
Abstract

Re-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c

... Show More
Scopus (39)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Sun Sep 28 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of different finishing and polishing systems on surface roughness of new low polymerized composite materials (An in vitro study)
...Show More Authors

Background: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Fast Processing RNA-Seq on Multicore Processor
...Show More Authors

RNA Sequencing (RNA-Seq) is the sequencing and analysis of transcriptomes. The main purpose of RNA-Seq analysis is to find out the presence and quantity of RNA in an experimental sample under a specific condition. Essentially, RNA raw sequence data was massive. It can be as big as hundreds of Gigabytes (GB). This massive data always makes the processing time become longer and take several days. A multicore processor can speed up a program by separating the tasks and running the tasks’ errands concurrently. Hence, a multicore processor will be a suitable choice to overcome this problem. Therefore, this study aims to use an Intel multicore processor to improve the RNA-Seq speed and analyze RNA-Seq analysis's performance with a multiproce

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF HUMAN AND ARTIFICIAL ARTICULAR CARTILAGE
...Show More Authors

Joint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 01 2012
Journal Name
2012 International Symposium On Innovations In Intelligent Systems And Applications
Edge detection for fast block-matching motion estimation to enhance Mean Predictive Block Matching algorithm
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Fast lightweight encryption device based on LFSR technique for increasing the speed of LED performance
...Show More Authors

LED is an ultra-lightweight block cipher that is mainly used in devices with limited resources. Currently, the software and hardware structure of this cipher utilize a complex logic operation to generate a sequence of random numbers called round constant and this causes the algorithm to slow down and record low throughput. To improve the speed and throughput of the original algorithm, the Fast Lightweight Encryption Device (FLED) has been proposed in this paper. The key size of the currently existing LED algorithm is in 64-bit & 128-bit but this article focused mainly on the 64-bit key (block size=64-bit). In the proposed FLED design, complex operations have been replaced by LFSR left feedback technology to make the algorithm perform more e

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 11 2014
Journal Name
Sensors
Automatic Frequency Controller for Power Amplifiers Used in Bio-Implanted Applications: Issues and Challenges
...Show More Authors

With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef

... Show More
View Publication
Scopus (21)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Sep 01 2014
Journal Name
19th International Conference On Methods And Models In Automation And Robotics (mmar) 2014
A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots
...Show More Authors

Scopus (22)
Crossref (20)
Scopus Crossref