The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.
In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char
... Show MoreAs a result of the developments that occurred in technological and digital technologies, which had a fundamental role in changing the paths of science, including the sciences of communication and the art of design, especially since these developments were the result of the information revolution, which called for the need to find alternatives that contribute to organizing presentations of information and texts in accordance with the manufacture of constructive content to deliver A communication message for the recipient to achieve culture and communication together, as it has become necessary to employ technical and digital developments in organizing that information according to the rules and laws of design and producing newspapers asso
... Show MoreHigh-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an elec
... Show MoreThis research is an attempt to achieve the following objectives: 1. identifying the nature of the non-verbal communication skills practiced by educational counselors in individual guidance. 2. Identifying the significant differences between non-verbal communication skills exercised by educational counselors from their point of view in regard to their gender (male-female). The researcher used a questionnaire as a tool prepared based on exploratory questions of educational counselors and literature. It has consisted of (26) items over four domains applied to a sample of (50) educational counselors (male and female) who have been chosen randomly from schools located in Baghdad Education Directorate Rusafa / 2. It was treated statistically u
... Show MoreThe aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show
... Show MoreAbstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show MoreThe research aims to build a communication apprehention scale for student (females) from preparatory schools .research sample included (400)students (females) were selected from the preparatory . to build a tool for the researchers are several steps , todetermine the meaning of communication apprehention and formulation of the items of the seale according to the linkert method .
<span>Deepfakes have become possible using artificial intelligence techniques, replacing one person’s face with another person’s face (primarily a public figure), making the latter do or say things he would not have done. Therefore, contributing to a solution for video credibility has become a critical goal that we will address in this paper. Our work exploits the visible artifacts (blur inconsistencies) which are generated by the manipulation process. We analyze focus quality and its ability to detect these artifacts. Focus measure operators in this paper include image Laplacian and image gradient groups, which are very fast to compute and do not need a large dataset for training. The results showed that i) the Laplacian
... Show More