Preferred Language
Articles
/
9Bew5I8BVTCNdQwCVn-K
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %. 

Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jun 24 2015
Journal Name
Chinese Journal Of Biomedical Engineering
Single Channel Fetal ECG Detection Using LMS and RLS Adaptive Filters
...Show More Authors

ECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.

Publication Date
Thu Apr 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Automatic human ear detection approach using modified adaptive search window technique
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Monitoring of south Iraq marshes using classification and change detection techniques
...Show More Authors

Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 28 2021
Journal Name
Journal Of The College Of Education For Women
The Role of Binary Settings in John Updike’s Short Stories: A Structuralist Approach: مؤيد انوية ججو الجماني
...Show More Authors

John Updike’s use of setting in his fiction has elicited different and even conflicting reactions from critics, varying from symbolic interpretations of setting to a sense of confusion at his use of time and place in his stories.  The present study is an attempt at examining John Updike’s treatment of binary settings in Pigeon Feathers and Other Stories (1962) to reveal theme, characters’ motives and conflicts.  Analyzing Updike’s stories from a structuralist’s perspective reveals his employment of two different places and times in the individual stories as a means of reflecting the psychological state of the characters, as in “The Persistence of Desire”, or expressing conflicting views on social and political is

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Fractional Local Metric Dimension of Comb Product Graphs
...Show More Authors

The local resolving neighborhood  of a pair of vertices  for  and  is if there is a vertex  in a connected graph  where the distance from  to  is not equal to the distance from  to , or defined by . A local resolving function  of  is a real valued function   such that  for  and . The local fractional metric dimension of graph  denoted by , defined by  In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph  and graph , where graph  is a connected graphs and graph  is a complate graph &

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Proceedings Of The 5th International Conference On Information Systems Security And Privacy
Identification and Extraction of Digital Forensic Evidence from Multimedia Data Sources using Multi-algorithmic Fusion
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2017
Journal Name
International Journal Of Science And Research (ijsr)
Multi Response Optimization of Submerged Arc Welding Using Taguchi Fuzzy Logic Based on Utility Theory
...Show More Authors

Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Multi-Objective Capacitated Transportation Problem with Mixed Constraints using different forms of membership functions
...Show More Authors

In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.

View Publication Preview PDF
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref