Preferred Language
Articles
/
9Bew5I8BVTCNdQwCVn-K
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %. 

Crossref
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Data Mining, Modelling And Management
Association rules mining using cuckoo search algorithm
...Show More Authors

Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jan 30 2025
Journal Name
Iraqi Journal Of Science
Improving the Reliability of Evolutionary Algorithm for Complex Detection in Noisy Protein-Protein Interaction Networks
...Show More Authors

Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological proce

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jul 01 2012
Journal Name
2012 International Symposium On Innovations In Intelligent Systems And Applications
Edge detection for fast block-matching motion estimation to enhance Mean Predictive Block Matching algorithm
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
...Show More Authors

View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Scalar Multiplication in Elliptic Curve Cryptography Implementation using Different Multipliers Over Binary Field GF (2233)
...Show More Authors

This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.

The first approach attains a performance index

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Simultaneous Determination of Binary Mixture of Estradiol and Progesterone Using Different Spectrophotometric Methods
...Show More Authors

Four rapid, accurate and very simple derivative spectrophotometric techniques were developed for the quantitative determination of binary mixtures of estradiol (E2) and progesterone (PRG) formulated as a capsule. Method I is the first derivative zero-crossing technique, derivative amplitudes were detected at the zero-crossing wavelength of 239.27 and 292.51 nm for the quantification of estradiol and 249.19 nm for Progesterone. Method II is ratio subtraction, progesterone was determined at λmax 240 nm after subtraction of interference exerted by estradiol. Method III is modified amplitude subtraction, which was established using derivative spectroscopy and mathematical manipulations. Method IIII is the absorbance ratio technique, absorba

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain
...Show More Authors

Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a

... Show More
View Publication Preview PDF
Publication Date
Fri May 17 2013
Journal Name
International Journal Of Computer Applications
Applied Minimized Matrix Size Algorithm on the Transformed Images by DCT and DWT used for Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Visible image watermarking using biorthogonal wavelet transform
...Show More Authors

In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s

... Show More
View Publication Preview PDF