This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreThis research is a continued efforts for a project on the fire tube boiler control for Al Rasheed edible oil factory. The aim is to enhance the control system with new integral control one. A functional blocks diagram (FBD) was built and simulated. With Schneider smart relays, FBD differs than ladder logic programming in which the PID option is active. An extensive work was done to understand the operation sequence, emergency shutdown, and faults causing the trips. A control program was designed to control logical sequence of operation. Furthermore temperature is controlled via cascade control with fuel and air controllers. The temperature controller output is send as remote set point to the fuel controller in a serial cascade manner. The f
... Show MoreThis paper presents a numerical simulation of the flow around elliptic groynes by using CFD software. The flow was simulated in a flume with 4m long, 0.4m wide, and 0.175m high with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow inlet with a constant the Groyne height of 10cm and a 1cm thickness, and the width of Groynes equals 7cm. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of 0.0057m3/sec. The CFD model showed a good ability to simulate the flow around Groynes with good accuracy. The results of CFD software showed that when using double elliptic Groy
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreAdvancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by re
... Show More