Preferred Language
Articles
/
9BdPS5ABVTCNdQwCG4XI
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Tue Jul 02 2013
Journal Name
Journal Of Baghdad College Of Dentistry
Local Drug Delivery Systems for Treating Periodontal Diseases: A Review of Literature
...Show More Authors

Publication Date
Fri Feb 13 2026
Journal Name
Journal Of Baghdad College Of Dentistry
Local drug delivery systems for treating periodontal diseases (A review of literature)
...Show More Authors

In this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.

View Publication Preview PDF
Publication Date
Fri Feb 05 2010
Journal Name
Etri Journal
MC-MIPOG: A Parallel t-Way Test Generation Strategy for Multicore Systems
...Show More Authors

View Publication
Scopus (43)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Enhancing Speed and Imperceptibility in Watermarking Systems by Leveraging Galois Field Tables
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun May 03 2020
Journal Name
Journal Of Advanced Laboratory Research In Biology
Hepatitis B Virus (HBV): A Review on its Prevalence and Infection in different areas of Iraq
...Show More Authors

View Publication
Publication Date
Fri Dec 30 2011
Journal Name
Al-kindy College Medical Journal
Laparoscopic versus open appendectomy in patients with acuteappendicitis
...Show More Authors

Background: Laparoscopic surgery for
appendicitis is now a well established and
advanced method of performing general surgical
procedures.
Objectives: To compare the outcome of
laparoscopic and open appendectomies in terms
of operative time, analgesic requirement,
postoperative complications, hospital stay, return
to normal activity and condition of scar.
Methods: This prospective study was carried
out from 1stMay 2008-1st January 2010, involving
110 patients (45 male and 65 female) with
features suggestive of acute appendicitis were
divided into 45 patients laparoscopic
appendectomy (LA) group and 65 patients open
appendectomy (OA) group, after taking informed
consent. LA was done with the

... Show More
View Publication Preview PDF