The research work represent a fast and simple method for the determination of methionine using chemiluminescence for the methionine-sodium hydroxide-luminol for the generation of a chemiluminesecent derivative of luminal. The emission was measured by continuous flow analysis made sample size of 83µL was used.Response versus concentration extended from 0.2-20 mM.L-1 with a percentage linearity of 96.17% or with 99.17% percentage of linearity for the range 0.6-20 mM.L-1. Reaching to a L.O.D. at (S/N=3) for 5 µM.L-1 from the gradual dilution for the minimum concentration in the calibration graph with a repeatability of less than 0.5% (n=10). A comparison was made between the new developed method with the classical method for the spectrophotometric determination by coupling with paired t-test or F-test and found that there is no significant difference between the two methods and the new adapted method which can be used as an alternative method.
This work aims to investigate the inhibition of vitality of Streptococcus mutans, which is the causative agent of caries. A 632.8 nm He-Ne laser with the output power of 4.5mW was used in combination with toluidine blue O (TBO) at the concentration of 50μg/ml as a photosensitizer. Streptococcus mutans was isolated from 35 patients if carious teeth. Three isolates were chosen and exposed to different energy densities of He – Ne laser light 3.8, 11.7, 34.5 and 104.1 J/cm². After irradiation, substantial reduction was observed in the number of colony forming units (CFU)/ ml. The reduction in the number of CFU was increasing as the dose increased.
Manganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreCuO nanoparticles were synthesized in two different ways, firstly by precipitation method using copper acetate monohydrate Cu(CO2CH13)2·H2O, glacial acetic acid (CH3COOH) and sodium hydroxide(NaOH), and secondly by sol-gel method using copper chloride(CuCl2), sodium hydroxide (NaOH) and ethanol (C2H6O). Results of scanning electron microscopy (SEM) showed that different CuO nanostructures (spherical and Reef) can be formed using precipitation and sol- gel process, respectively, at which the particle size was found to be less than 2 µm. X-ray diffraction (XRD)manifested that the pure synthesized powder has no inclusions that may exist during preparations. XRD result
... Show MoreThree phenol-formaldehyde resins having pendant maleimides were prepared by poly condensation of N-(hydroxyphenyl) maleimides with formaldehyde under conditions similar to those in Novolac preparation. The prepared resins were modified by two methods, the first one includes esterification of phenolic hydroxyl groups in the prepared resins via their treatment with benzoyl, acryloyl, methacryloyl and cinnamoyl chlorides respectively in the presence of triethylamine, while the second modification includes free radical polymerization of vinylic bonds in the prepared resins to produce cross-linked thermally stable polymers.
Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show Morea simple accurate and sensitive spectrophotometric method for the determination of promethazine HCI has been developed the method is based on the oxidative coupling reaction of promethazine
This paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be
... Show MoreA simple, rapid and sensitive spectrophotometirc method for the determination of trace amounts of promethazine hydrochloride in the aqueous solution is described. The method is based on the complexation of promethazine hydrochloride with In (III) in the presence of sodium hydroxide to form an soluble product with maximum absorption at 304nm. Beer’s law is obeyed over the concentration range of (2- 20μg/ml) with molar absorptivity of (1.92× 103 L.mol-1 .cm -1 ). The optimum conditions for all development are described and the proposed method has been successfully applied for the determination of promethazine hydrochloride in bulk drug.