Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predicting Iraq’s average GDP per capita income by relying on the amounts of average GDP per capita income in the past years (1981-2020). The researcher found that in a second way, it became clear that the non-linear regression model of the Asian model was the best model representing (average per capita GDP income) in Iraq, and this model was used to predict the period (20221-2027). When comparing the two methods of projected amounts up to 2027, it was found that the best method was the second based on the indicator mean absolute percentage error (MAPE) because he has the least value.
In the present work, different thicknesses of CdS film were prepared by chemical bath deposition. Z-Scan technique was used to study the nonlinear refractive index and nonlinear absorption coefficients. Linear optical testing were done such as transmission test, and thickness of films were done by the interference fringes (Michelson interferometer). Z-scan experiment was performed at 650nm using CW diode laser and at 532nm wavelength. The results show the effect of self-focusing and defocusing that corresponds with nonlinear refraction n2. The effect of two-photon absorption was also studied, which correspond to the nonlinear absorption coefficient B.
In this paper, a statistical analysis compared the pattern of distribution of spending on various goods and services and to identify the main factors that control the rates of spending between the survey of social and economic status of families in Iraq for the year (2007) and the survey of Iraq knowledge net work (IKN) for the year (2011), which were carried out by the Central Bureau of Statistics through the use of factor analysis and cluster analysis, using the ready statistical software package ready (SPSS) to gain access to the results.
It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases : first, in real data; and secondly, after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.
It reflects the gross domestic product in any country total output of goods and services by the size of the country's citizens and foreign residents during the period of the year and reflect the contribution of the commodity sectors of the economy and the distribution and service in the composition of output. And gross domestic product in Iraq as an indicator dominated in the composition of oil output, along with the contribution of the service sector, as the gross domestic product is the output of a yield lien and subjected GDP in Iraq to a series of declines succession due to vibrations of the oil market during the economic blockade on the one hand and stop imported production inputs, lack of arriving in commodity s
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV arr
... Show MoreABSTRACT:
Interest rates are one of the important aspects that affect the banking business directly, which is characterized by unstable dynamic dynamics, which must be viewed on a daily and continuous basis through the macroeconomic view, which directly affects the bank’s income realized from loans as interest received or interest paid on its deposits as an expense. Hence the earnings per share. The relationship between interest rates and between net income and earnings per share was measured and a correlation was found between them, and then the effect between them was measured using regression equations and they were applied and th
... Show More