Abstract Asthma is a complex disease defined by chronic airway inflammation and airflow limitation causing variable respiratory symptoms which include shortness of breath (SOB), wheezing, chest tightness and cough. Asthma guidelines advocate adding a second long acting bronchodilator to medium doses of inhaled corticosteroids (ICS) rather using high doses of ICS alone to control moderate to severe persistent asthma. The aim of this study was to evaluate the clinical outcomes of three medication regimens indicated for Iraqi patients suffering from persistent asthma. This study was interventional randomized clinical study conducted on a sample of adult Iraqi asthmatic patients in Baghdad City. The study com
... Show MoreFlexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy
... Show MoreThe purpose of this work is to concurrently estimate the UVvisible spectra of binary combinations of piroxicam and mefenamic acid using the chemometric approach. To create the model, spectral data from 73 samples (with wavelengths between 200 and 400 nm) were employed. A two-layer artificial neural network model was created, with two neurons in the output layer and fourteen neurons in the hidden layer. The model was trained to simulate the concentrations and spectra of piroxicam and mefenamic acid. For piroxicam and mefenamic acid, respectively, the Levenberg-Marquardt algorithm with feed-forward back-propagation learning produced root mean square errors of prediction of 0.1679 μg/mL and 0.1154 μg/mL, with coefficients of determination of
... Show MoreBACKGROUND: Three-dimensional (3D) printing is an evolving technology that has been used recently in a wide spectrum of applications. AIM: The objective is to evaluate the application of 3D printing in various neurosurgical practice. PATIENTS AND METHODS: This pilot study was conducted in the neurosurgical hospital in Baghdad/Iraq between July 2018 and July 2019. An X, Y, and Z printer was used. The working team included neurosurgeons, biomedical engineers, and bio-technicians. The procedure starts with obtaining Magnetic resonance imaging (MRI) or computed tomography (CT) scan in particular protocols. The MRI, and CT or angiography images were imported into a 3D programmer for DICOM images called 3D slice where these files con
... Show MoreBackground: Complete analysis of facial profile should also include an evaluation of soft tissue morphology. Materials and Method:The sample consisted of 90 Iraqi adults (45 males and 45 females) aged 18-25 years from Baghdad city divided into 3 groups according to the ANB angle with 30 subjects in each group (15 males and 15 females) for class I, II and III. Lateral cephalometric radiograph was taken for each subject and 8 angular and 5 linear measurements were identified and determined, t-test, ANOVA and LSD test were used to compare between both genders and between different classes. Results:Showed that females had greater angular measurements and smaller linear measurements with more lip prominence than males in all classes, there was m
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show More