This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Recent investigations show that wireless communication systems are very promising application area of chaotic dynamics. A feature of chaotic signals is super wide bandwidth; the power spectrum extends both to the region of very low frequencies as well as to high frequencies. For the proposed system, the bandwidth is extended from approximately 100 Hz to 50 MHz. The nature of chaotic signal is an aperiodic. Therefore, the resolution of the proposed system is high to provide an aperiodicity of the chaotic signal. In practice the following simulation results on MATLAB software platform show that the effectiveness of the model described which has low-cross-correlation and can meet the actual need. Simulation results show sequence length in 264-1-bit with cross-correlation less than 0.0025 for our architecture.
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreVol. 6, Issue 1 (2025)
The purpose of this interview study was to explore teachers’ perceptions of Response to Intervention (RtI) implementation in their school. Particularly, the study explored teachers’ knowledge of RtI, teachers’ perceptions of RtI their intervention/instruction in school, and teachers’ suggestions of RtI implementation in their school. The study design was a qualitative interview in nature and data were collected from face-to-face interviews with four teachers in one school. The findings revealed that RtI means to identify students’ problems; the positive teachers’ perceptions of their implementation included: (a) students who demonstrate progress through RtI are those who receive private education services, (b) progress monito
... Show MoreResidential complexes have witnessed a great demand in most countries worldwide, as they are one of the main infrastructure elements, in addition to achieving a developed urban landscape. However, complex residential projects in developing countries face various factors that could be improved in their implementation, especially in Iraq. Sixty-two experts in residential complex projects were interviewed and surveyed to verify these projects' failure factors,. Fifty-one factors were the main failure factors, divided into four main components (leadership, management system, external forces, and project resources). The Relatively Important Index (RII) is used to determine the relative importance factors and obtain the top tw
... Show MoreIn this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
Starting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.