Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for designing the DL training sequences to maximize the achievable sum rate of FDD systems with limited channel coherence time (CCT) is proposed using a waterfilling power allocation method. This achievable sum rate maximization is achieved using sequences produced from a summation of the user’s covariance matrices and then applying a waterfilling power allocation method to the obtained low-complexity training sequence. The results show that the proposed TS outperforms the existing methods in the medium and high SNR regimes while reducing computational complexity. The obtained results signify the proposed TS’s feasibility for practical consideration compared with the existing DL training sequence designs.
In modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show MoreWith the development of computer architecture and its technologies in recent years, applications like e-commerce, e-government, e-governance and e-finance are widely used, and they act as active research areas. In addition, in order to increase the quality and quantity of the ordinary everyday transactions, it is desired to migrate from the paper-based environment to a digital-based computerized environment. Such migration increases efficiency, saves time, eliminates paperwork, increases safety and reduces the cost in an organization. Digital signatures are playing an essential role in many electronic and automatic based systems and facilitate this migration. The digital signatures are used to provide many services and s
... Show MorePhotonic crystal fiber interferometers are used in many sensing applications. In this work, an in-reflection photonic crystal fiber (PCF) based on Mach-Zehnder (micro-holes collapsing) (MZ) interferometer, which exhibits high sensitivity to different volatile organic compounds (VOCs), without the needing of any permeable material. The interferometer is robust, compact, and consists of a stub photonic crystal fiber of large-mode area, photonic crystal fiber spliced to standard single mode fiber (SMF) (corning-28), this splicing occurs with optimized splice loss 0.19 dB In the splice regions the voids of the holey fiber are completely collapsed, which allows the excitation and recombination of core and cladding modes. The device reflection
... Show MoreAPDBN Rashid, International Journal of Humanities and Social Sciences/ RIMAK, 2023
The steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreIn this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A compari
A simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ
... Show More