Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship and meanings of words in the document. As a result the sparsity and semantic problem that is prevalent in textual document are not resolved. In this study, the problem of sparsity and semantic is reduced by proposing a graph based text representation method, namely dependency graph with the aim of improving the accuracy of document clustering. The dependency graph representation scheme is created through an accumulation of syntactic and semantic analysis. A sample of 20 news groups, dataset was used in this study. The text documents undergo pre-processing and syntactic parsing in order to identify the sentence structure. Then the semantic of words are modeled using dependency graph. The produced dependency graph is then used in the process of cluster analysis. K-means clustering technique was used in this study. The dependency graph based clustering result were compared with the popular text representation method, i.e. TFIDF and Ontology based text representation. The result shows that the dependency graph outperforms both TFIDF and Ontology based text representation. The findings proved that the proposed text representation method leads to more accurate document clustering results.
The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreAkaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Abstract
Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al
... Show MoreThis study came to discuss the subject of industries dependent on petrochemical industries in Iraq (plastic as a model) during the period 2005–2020, and the study concluded that the plastic industries contribute to areas of advancement and progress and opportunities to deal efficiently with the challenges posed by the new variables, the most important of which is the information revolution. communications and trade liberalization, and this is what contributes to the competitiveness of these industries. And because the petrochemical industry in Iraq has an active role in establishing plastic industrial clusters and clusters of micro, small, and medium industries by providing the necessary feedstock for these industries in various fields
... Show MoreThis paper presents a parametric audio compression scheme intended for scalable audio coding applications, and is particularly well suited for operation at low rates, in the vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus Noise (SN). The principal component of the system is an. overlap-add analysis-by-synthesis sinusoidal model based on conjugate matching pursuits. Perceptual information about human hearing is explicitly included into the model by psychoacoustically weighting the pursuit metric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal listening tests demonstrated that our coder gave competitive performance to the-state-of-the- art HelixTM Producer Plus 9 from
... Show More