Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship and meanings of words in the document. As a result the sparsity and semantic problem that is prevalent in textual document are not resolved. In this study, the problem of sparsity and semantic is reduced by proposing a graph based text representation method, namely dependency graph with the aim of improving the accuracy of document clustering. The dependency graph representation scheme is created through an accumulation of syntactic and semantic analysis. A sample of 20 news groups, dataset was used in this study. The text documents undergo pre-processing and syntactic parsing in order to identify the sentence structure. Then the semantic of words are modeled using dependency graph. The produced dependency graph is then used in the process of cluster analysis. K-means clustering technique was used in this study. The dependency graph based clustering result were compared with the popular text representation method, i.e. TFIDF and Ontology based text representation. The result shows that the dependency graph outperforms both TFIDF and Ontology based text representation. The findings proved that the proposed text representation method leads to more accurate document clustering results.
ABSTRACT This paper has a three-pronged objective: offering a unitary set of semantic distinctive features to the analysis of nominal “hatred synonyms” in the lexicon of both English and Standard Arabic (SA), applying it procedurally to test its scope of functionality crosslinguistically, and singling out the closest noun synonymous equivalents among the membership of the two sets in this particular lexical semantic field in both languages. The componential analysis and the matching procedures carried have been functional in identifying ten totally matching equivalents (i.e. at 55.6%), and eight partially matching ones (i.e. at %44.4%). This result shows that while total matching equivalences do exist in the translation of certain Eng
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
In the process of translating Qur’anic texts, there is an urgent need for interpretations of the Qur’anic text due to the presence of many incomprehensible Qur’anic verses or words because of our distance from the standard Arabic, language in which the Holy Qur’an was revealed, and the introduction of the foreign words into our language, in addition to the fact that many Qur’anic words are no longer used. All this prompted the need for the interpretation of the Qur'anic text, Therefore, it is necessary for the translator to resort to the books of interpretation if he intends to translate the Qur’an
Metaphor is one of the most important linguistic phenomena of the artistic text, as it is the expression of the author’s emotions and evaluations, the result of a deep inner transformation of the semantic words and visual means of reflecting the national culture of each people. This paper examines the concept of linguistic metaphors and analyzes its types in the Russian and Arabic linguistics, provides a comparative analysis of metaphors in Russian and Arabic — all this allows to conclude that metaphorization is characteris- tic of different parts of speech. In the Russian language stylistic differentiation of the metaphors expressed more than in Arabic, so translation of many “sty- listic” metaphors from Russian into Arabic due to
... Show MoreSummary:This article discusses the topic of phraseological units with the names of wild animals in the Russian and Arabic languages in the aspect of their comparative semantic and cultural analysis, since a comparative analysis of the meanings of phraseological units of the Arabic and Russian languages, detection of coincidences and differences in the compared languages, is an important method for studying linguoculturology, since phraseological units represent a reflection of culture in the language
Literary works include, for the most part, text thresholds, which are the first entry into reading them and understanding their connotations, and (literary works) vary according to text thresholds, some of which are limited to the title and on the cover page only, and others, in addition to these two thresholds, are based on the dedication threshold too, and others ...
This study takes the story of "Mamo Zain" of the poet Ahmed Al-Khani and his translator Sheikh Muhammad Ramadan Al-Bouti as the field of study, as it is a unique literary work, which included a number of textual thresholds which supported each other and cooperated with the content of the work.
The threshold of dedication in the story of "Mamo Zain" was a spee
... Show MoreIn recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreThe use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2
... Show MoreThe basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.