The objective of this research was to estimate the dose distribution delivered by radioactive gold nanoparticles (198 AuNPs or 199 AuNPs) to the tumor inside the human prostate as well as to normal tissues surrounding the tumor using the Monte-Carlo N-Particle code (MCNP-6.1. 1 code). Background Radioactive gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated to treat prostate cancer in animals. In order to use them as a new therapeutic modality to treat human prostate cancer, accurate radiation dosimetry simulations are required to estimate the energy deposition in the tumor and surrounding tissue and to establish the course of therapy for the patient. Materials and methods A simple geometrical model of a human prostate was used, and the dose deposited by 198 AuNPs or 199 AuNPs to the tumor within the prostate as well as to the healthy tissue surrounding the prostate was calculated using the MCNP code. Water and A-150 TEP phantoms were used to simulate the soft and tumor tissues. Results The results showed that the dose due to 198 AuNPs or 199 AuNPs, which are distributed homogenously in the tumor, had a maximal value in the tumor region and then rapidly decreased toward the prostate–tumor interface and surrounding organs. However, the dose deposited by 198 Au is significantly higher than the dose deposited by 199 Au in the tumor region as well as normal tissues. Conclusions According to the MCNP results, 198 AuNPs are a promising modality to treat prostate cancer and other cancers and 199 AuNPs could be used for imaging purposes. Abstract
Abstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreThis study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MoreIn the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show MoreIn this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreMetal enhanced fluorescence (MEF) is an unequaled phenomenon of metal nanoparticle surface plasmons, when light interacts with the metal nanostructures (silver nanoparticles) which result electromagnetic fields to promote the sensitivity of fluorescence. This work endeavor to study the influence of silver nanoparticles on fluorescence intensity of Fluoreseina dye by employment mixture solution with different mixing ratio. Silver nanoparticles had been manufactured by the chemical reduction method so that Ag NP layer coating had been done by hot rotation liquid method. The optical properties of the prepared samples (mixture solution of Fluoreseina dye solutions and colloidal solution with 5 minutes prepared of Ag NPs) tested by using UV-V
... Show MoreThe present study aims to detection optimal conditions of production of amylase enzyme from isolate of B. subtillis A4. Nine carbonic sources were represented by starch, maltose, fructose, sucrose, glucose, arabinose, xylose, sorbitol and mannitol) at concentration of 1% for each source. It was found that the best was represented by starch carbonic, which showed higher activity and qualitative activity of 7.647 Unit/ ml and 461.56 Unit/ mg. Ten nitrogen sources were selected, including yeast extract, peptone, trypton, gelatin, urea and meat extract as organic sources Ammonium sulphate, Sodium nitrate, Potassium nitrate and Ammonium chloride as inorganic sources. These sources were added at aconcentration of 0.5% to the production medium. Th
... Show More