In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance estimation performances. Based on the accurate estimations of the adaptive extended state observer, the proposed adaptive full state error feedback controller is equipped with variable gains driven by the tracking error to develop control precision. The integration of the advantages of the adaptive extended state observer and the adaptive full state error feedback controller can improve the dynamic transient and static steady-state effectiveness, respectively. To assess the superior performance of the proposed adaptive active disturbance rejection control, a comparative analysis is conducted between the proposed control scheme and the classical active disturbance rejection control in two different cases. It is worth noting that the active disturbance rejection control serves as a benchmark for evaluating the performance of the proposed control approach. The results from the comparison studies executing two simulated cases validate the superiority of the suggested control, in which estimation, tracking response rate, and steering angle precision are greatly improved by the scheme proposed in this article.
In solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational
... Show MoreObjective: The present study investigates whether the exposure to low-power diode laser induces denaturation in red blood cell (RBC) membrane protein composition, and determines the irradiation time for when denaturation of membrane protein process begins. Background: A low-energy laser has been used extensively in medical applications. Several studies indicated significant positive effects of laser therapy on biological systems. In contrast, other studies reported that laser induced unwanted changes in cell structure and biological systems. The present work studied the effect of irradiation time of low-power diode laser on the structure of membrane proteins of human RBCs. Materials and methods: The RBC suspension was divided into five equa
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreForecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti
... Show MoreThe importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h
... Show MoreThe study aims at finding out the effect of the lead time strategy on the first intermediate class pupils' achievement in geography The partial experimental design of two groups, experimental and control, with pre-post tests is used. The sample is represented in (73) female pupils. The sample is divided into two groups (37) experimental group and (36) control one. The sam ple is selected from first intermediate class pupils ( Al Batol intermediate school for girls) Baghdad Al-karkh-3, for academic year 2015-2016 The researcher has equalized the two groups in several variables: the previous achievement tests, intelligence, age in months, the scores of geography test of first course
Samples prepared by using carbon black as a filler material and phenolic resin as a binder. The samples were pressed in a (3) cm diameter cylindrical die to (250)MPa and treated thermally within temperature range of (600-1000)oC for two and three hours. Physical properties tests were performed, like density, porosity, and X-ray tests. Moreover vicker microhardness and electric resistivity tests were done. From the results, it can be concluded that density was increased while porosity was decreased gradually with increasing temperature and treating time. In microhardness test, it found that more temperature and treating time cause more hardness. Finally the resistivity was decreased in steps with temperature and treating time. It can be c
... Show MoreThe aim of this research is to recognize the tasks undertaken by the headmasters of intermediate schools concerning time- administration, in accordance to the viewpoints of the headmasters of intermediate schools in the Administration of Education of Al-Karkh the Third. The sample of this research consists of (60) headmasters and &n
... Show MoreCloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MoreThe monthly time series of the Total Suspended Solids (TSS) concentrations in Euphrates River at Nasria was analyzed as a time series. The data used for the analysis was the monthly series during (1977-2000).
The series was tested for nonhomogenity and found to be nonhomogeneous. A significant positive jump was observed after 1988. This nonhomogenity was removed using a method suggested by Yevichevich (7). The homogeneous series was then normalized using Box and Cox (2) transformation. The periodic component of the series was fitted using harmonic analyses, and removed from the series to obtain the dependent stochastic component. This component was then modeled using first order autoregressive model (Markovian chain). The above a
... Show More