Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will change the problem of linear programming and will affect the optimal solution, and therefore we need a method that helps us to stand on the impact of changing these constants on the optimal solution that has been reached. General concepts about the binary model and some related theories have also been addressed. By analyzing the sensitivity, we relied on real data for a company that transports crude oil and its derivatives. The mathematical model was formulated for it and the optimal solution was reached using the software. Ready-made sop WINQSB and then calculate the shadow price values for the binding constraints, in addition to what
Water is necessary for sustainable development and healthy society. Groundwater, often, is not sufficient and protected for direct human consumption. Due to increase in the density of population the requirement of water is increasing. In this work, the assessment of groundwater quality was conducted in the south-west part of Basrah province. Spatial variations in the quality of groundwater in the study area have been analyzed utilizing GIS technique. The geochemical parameters of groundwater samples including pH, EC, TDS, Ca, Mg, Na, Cl, HCO3, SO4, and NO3 were assessed in this study. Information maps of the study area have been actually prepared to make use of the GIS spatial
... Show MoreA time series analysis can help to observe the behavior of the system and specify the system faults. In addition, it also helps to explain the various energy flows in the system and further aid in reducing the thermodynamic losses. The intelligent supervisory LabVIEW software can monitor the incoming data from the system by using Arduino microcontroller and calculates the important parameters. Energy, exergy, and anergy analysis present in this paper to investigate the system performance as well as its components. To accomplish this, a 4-ton vertical split air conditioner based on vapor compression refrigeration cycle charged with refrigerant R-22 was modified for experimental analysis. The results showed that during 540
... Show MoreThe reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified de
: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for competition. Forecasting can help decision maker to manage these problems by identifying which technologies are appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real components are estimated to predict the future behaviour of electricity peak load. Accordingly, the optimal model obtained to fit the periodic component is estimated using spectrum analysis and Fourier mod
... Show MoreThe aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t
... Show MoreThe purpose of this research is to design a list of the scientific and moral values that should be found in the content of the computer textbook for the second intermediate grade, as well as to analyze the content of the above- mentioned book by answering the following question:
What is the percentage of availability of scientific and moral values in the content of the computer textbook for Second Intermediate grade issued by the Iraqi Ministry of Education / the general directorate of the curriculum, for the academic year (2017-2018)?
In order to achieve the research objectives, the descriptive method (content analysis method) was adopted. The research community has been iden
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show More
This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo
... Show MoreThe relative strength index (RSI) is one of the best known technical analysis indicators; it provides the speculators by prior signals about the future stock’s prices, and because the speculations in shares of companies which listed in the Iraq Stock Exchange have a high degree of risk, like risk of shares prices felling, so the speculators became committed to use some methods to reduce these risks, and one of these methods is the technical analysis by using the relative strength index (RSI) which enable the speculators of choosing the right time for buy and sell the stocks and the right time to enter or leave the market by using the historical rice data. And from here the problem of the research formulated as “Is the using of
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).