The phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wind speed and visibility during May 4-5 2022 and 25-26 June 2022. In this study, the appropriateness of two various MODIS-based techniques to discover dust in 13 stations in Iraq was examined. The results suggest NDDI index is the most appropriate index to identifying dust storms across Iraq. Also, the MEDI index has impairment to discover dust through multiple land-cover forms. Beside that MEDI consider an ineffective index to detect and discover dust storms throughout whole kinds of land cover over Iraq.
This study aims to identify changes in vegetation cover and its impact on the climate of Mosul City. The analytical method of the study relies on changes in Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST); GIS technology was used to measure these statistics. Landsat (5,8) imagery was used to detect the change in vegetation cover change and land surface temperature during the study period from 2010 to 2022, where the unsupervised classification technique was used to determine LU variations. The results revealed significant changes among the LU classes during the study period, primarily due to human activities. The most prominent change in LU was the urban expansion of agricultural
... Show MoreDifferent ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
Drones are highly autonomous, remote‐controlled platforms capable of performing a variety of tasks in diverse environments. A digital twin (DT) is a virtual replica of a physical system. The integration of DT with drones gives the opportunity to manipulate the drone during a mission. In this paper, the architecture of DT is presented in order to explain how the physical environment can be represented. The techniques via which drones are collecting the necessary information for DT are compared as a next step to introduce the main methods that have been applied in DT progress by drones. The findings of this research indicated that the process of incorporating DTs into drones will result in the advanc
This study appears GIS techniqueand remote sensing data are matching with the field observation to identify the structural features such as fault segments in the urban area such as the Merawa and Shaqlawa Cities. The use of different types of data such as fault systems, drainage patterns (previously mapped), lineament, and lithological contacts with spatial resolution of 30m was combined through a process of integration and index overlay modeling technique for producing the susceptibility map of fault segments in the study area. GIS spatial overlay technique was used to determine the spatial relationships of all the criteria (factors) and subcriteria (classes) within layers (maps) to classify and map the potential ar
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreThe study addressed the water ecosystems of the marshes of Maysan Governorate as one of the important areas in Iraq in terms of the environmental, economic and tourism aspects. This area was exposed to great environmental changes due to natural and human factors which greatly affected the water ecosystem and made the area susceptible to many problems that affected the biological life of living organisms. The marshes of Maysan Governorate was affected by vital factors and non-vital factors. The marshes of Maysan Governorate was characterized by the UN Organization as one of the most important centers of biodiversity in the world because of the abundance of different and rare living organisms such as birds, fish, and reptiles as well as the e
... Show MoreData of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreA band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).