Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
Search Results at the International Journal of Science and Research (IJSR)
In the current study, two sites were selected from the city of Adhamiya, central Baghdad. The first site is the Adhamiya Corniche, which includes a sample of river water and the second includes domestic sewage in the same area. The total density of benthic invertebrates was 775 ind/m2, which is divided into 15 taxa. Biological indices were found, such as the stability index, the abundance index, the biodiversity index (Shannon’s index), the homogeneity index, and the invader’s guide. The result showed an increase in the density of benthic invertebrates, as well as an increase in the diversity of these organisms.
This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in th
... Show MoreNanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreThe fluctuation properties of energy spectrum, electromagnetic transition intensities and electromagnetic moments in nucleus are investigated with realistic shell model calculations. We find that the spectral fluctuations of are consistent with the Gaussian orthogonal ensemble of random matrices. Besides, we observe a transition from an order to chaos when the excitation energy is increased and a clear quantum signature of the breaking of chaoticity when the single-particle energies are increased. The distributions of the transition intensities and of the electromagnetic moments are well described by a Porter-Thomas distribution. The statistics of electromagnetic transition intensities clearly deviate from a Porter-Thomas distribution (i
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
The accretion circumstellar disk of young stars and the Brown dwarf plays an essential role in the formation and evaluation of the planet. Our main work in this paper is to investigate the geometrical shape model for the protoplanetary disk around one of the Brown Dwarfs. The photometric measurements for the brown dwarf CFHT-BD-Tau 4 were extracted from the Vizier archive. We used a numerical simulation to build a model of the spectral energy distribution of our target CFHT-BD-Tau 4. The spectral energy distribution model was fitted with observational data for the brown dwarf CFHT-BD-Tau 4. A transitional disk has been assumed around CFHT-BD-Tau 4. We obtained physical properties of the two disks and the size of the gap between them
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show More