A cumulative review with a systematic approach aimed to provide a comparison of studies’ investigating the possible impact of the active form of vitamin D3, calcitriol (CTL), on the tooth movement caused by orthodontic forces (OTM) by evaluating the quality of evidence, based on collating current data from animal model studies, in vivo cell culture studies, and human clinical trials. Methods: A strict systematic review protocol was applied following the application of the International Prospective Register of Systematic Reviews (PROSPERO). A structured search strategy, including main keywords, was defined during detailed search with the application of electronic database systems: Medline/Pubmed, EMBASE, Scopus, Web of Science, and PsycINFO. In addition, a search was carried out with the use of ClinicalTrials.gov search in order to include ongoing or recently completed trials. The Oxford Level of Evidence and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was utilized to critically evaluate the risk of bias and relative quality of studies included. Meta-analysis with the use of RevMan5 software, random effect, and inverted variable method allowed the quantification of cumulative results. Results: Twenty-seven studies were identified which fulfilled inclusion criteria, including two clinical studies. The assessed level of evidence was variable and inconsistent, predominantly being moderate or low due to a significant difference in study design, sample size, and study protocols. Data synthesis rendered from meta-analysis involving various CTL doses demonstrated slight discrepancies in tooth movement between control and experimental groups (mean difference = 0.27; 95% CI: 0.01–0.53, std mean difference = 0.49; 95% CI: 0.09–0.89), as well as relatively moderate heterogenicity. Conclusions: Although it has been suggested that CTL could accelerate OTM in animal studies and clinical context, these scarce data were supported by a low level of evidence and the studies were carried out using inadequate sample size. Well-powered RCT studies would help to overcome the lack of robustness of the research.
In this paper, an adaptive integral Sliding Mode Control (SMC) is employed to control the speed of Three-Phase Induction Motor. The strategy used is the field oriented control as ac drive system. The SMC is used to estimate the frequency that required to generates three phase voltage of Space Vector Pulse Width Modulation (SVPWM) invertor . When the SMC is used with current controller, the quadratic component of stator current is estimated by the controller. Instead of using current controller, this paper proposed estimating the frequency of stator voltage since that the slip speed is function of the quadratic current . The simulation results of using the SMC showed that a good dynamic response can be obtained under load
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties to be used as a base course layer replacing the traditional materials of coarse aggregate and broken stones which are scarce at economical prices and hauling distances. Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%, medium curing cutback asphalt (MC-30), and hydrated lime are used in this study. The conducted tests on untreated and treated gypseous soil with different percentages of medium curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one dimensional confine
... Show MoreConjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross
... Show MoreThe present study was identified the type of bacterial contamination of Iraqi banknotes currency (Iraqi dinars) in circulation. 68 Iraqi banknotes currency of different denominations samples were randomly gathered from different locations and different occupational groups in Baghdad city. The results showed 61 (89.70%) of the samples were determined to be contaminated with bacteria, whereas 7 (10.29%) were confirmed to be sterile. A total of 11 different species of bacteria resulting in 72 isolates were found from those 61 contaminated Iraqi banknotes currency. Based on culture, morphological and biochemical tests, 11 isolates were identified as Bacillus sp., Staphylococcus aureus, Staphylococcus epidermidis, Corynebacterium diphtheria, Leu
... Show MoreWe introduced the nomenclature of orthogonal G -m-derivations and orthogonal generalized G -m-derivations in semi-prime G -near-rings and provide a few essentials and enough provision for generalized G -n-derivations in semi-prime G -near-rings by orthogonal.
This paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show More
