Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,
Let
In line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreIn line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t
... Show MoreThroughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new kind of module namely ET-hollow lifting module, Let T be a submodule of M, M is called ET-hollow lifting module if for every sub-module H of M with
A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.