Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
To maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreThe importance of the research from a practical point of view lies in the fact that it presents a set of statistics and data that give a clear picture of how the Iraqi newspapers (the subject of the study) deal with the visit of "Pope Francis" to Iraq ، and what are the most prominent indicators and manifestations of that visit in promoting societal peace among the Iraqi public. From a scientific point of view، the research provides another scientific addition to the media library، especially with regard to journalistic treatments and methods of framing the Arab international press for the subject of the visit، which could be a starting point for other researchers to complete qualitative research in this field. The research prob
... Show MoreThe term "nano gold," also known as "gold nanoparticles," is commonly used. These particles are extremely small, with a diameter of less than 100 nm, which is only a fraction of the width of a human hair. Due to their tiny size, nano gold particles are often found in a colloidal solution, where they are suspended in a liquid stabilizer. This colloidal gold is essentially another name for nano gold. The main method for producing gold nanoparticles in a colloidal solution is the citrate synthesis technique, which involves combining different solutions to precipitate the gold nanoparticles. In biological systems, copper complexes play a significant role at the active sites of many metalloproteins. These complexes have potential applications in
... Show MoreCarbazone Derivatives (CD) (semicarbazone, semithiocarbasone) are produced by the condensation reaction between a aldehyde (or ketone) with a carbazide derivatives (semicarbazide, semithiocarbazide). CD and their metal complexes existent a wide range of implementation that stretch from their ply in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as anti-fungal,anti-bacterial, anti-cancer, anti-human immunodeficiency virus, anti-inflammation, anti-neoplastic,inhibition corrosion, antioxidation, antiradical. This paper reviews the definition, importance and various applications of carbazone derivatives with transitional meta
Abstract:
Research Topic: Ruling on the sale of big data
Its objectives: a statement of what it is, importance, source and governance.
The methodology of the curriculum is inductive, comparative and critical
One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it
Recommendation: Follow-up of studies dealing with the provisions of the issue
Subject Terms
Judgment, Sale, Data, Mega, Sayings, Jurists
This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
Particulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in