Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
BACKGROUNDS Nasoalveolar molding (NAM) application is among presurgical management (PSM) techniques used for infants with cleft lip and palate (CLP). It helps to approximate the palatal cleft and to reshape the nasoalveolar complex prior to primary lip repair. This study aimed to explore types of PSM and the dental speciality provision for infants with CLP in Baghdad. The status of NAM usage and surgeons’ perceptions toward NAM usage were assessed. MATERIALS AND METHODS This is a cross-sectional paper-based questionnaire study that collected responses of surgeons perform primary lip and nose repair regarding PSM. The questionnaire was distributed amongst public and private hospitals in Baghdad. Twenty surgeons were enrolled (only those su
... Show MoreBackground: The anterior knee pain is an important chief complaint of the patients with knee osteoarthritis due to patellofemoral pathology. The pain receptors denervation can be achieved by circumferential denervation of the patellar area by a process of electrocautery.
Objectives: The aim of current study is to assess the pain after total knee arthroplasty (TKA) by patelloplastywith and without circumferential denervation via electrocautery at a minimum follow up with 1 year separately for each patient.
Type of the study:Cross- sectional study.
Methods: Thirty five patients,with mean age of about (62.8) years, were enrolled in this pros
... Show MoreEndothelin-I (ET-I) is one of the potent vasoconstrictors secreted from endothelial cells when needed. Many studies revealed the elevation of serum ET-I with human diabetes and microangiopathies. Since insulin resistance is a case of mixed diabetic and pre-diabetic cases, many risk factors beyond obesity and inflammation are proposed. The current study aims to demonstrate the association between serum ET-I and asymmetric dimethylarginine (ADMA) and insulin resistance in type 2 diabetes mellitus (T2DM). Sera of 73 subjects were enrolled currently (control= 35 subjects, and 38 with T2DM for more than 7 years), aged (40-60) years old, with distinct body mass index (BMI) ≤ 25 for control volunteers and (BMI) ≥ 25 for obesity and diabetes
... Show MoreIntroduction: Cardiovascular diseases are the main cause of death among type 2 diabetic patients. Higher levels of plasminogen activator urokinase receptor have been found to predict morbidity and mortality across acute and chronic diseases in the common populace. This study aims to explore the role of serum plasminogen activator urokinase receptor levels as a cardiometabolic risk factor among type 2 diabetic Iraqi patients. Methods: Seventy type 2 diabetic patients (40 male and 30 female) (mean age: 46.20±7.56 years) participated in this study; 35 patients were with cardiovascular disease and 35 were without cardiovascular disease; their ages range was 40-55 years. In addition, 30 individuals who apparently healthy were selected a
... Show More