priorities of materials research due to their promising properties, especially in the field of thermoelectricity. The efficiency or performance of thermoelectric devices is expressed in terms of the thermoelectric figure-of-merit (ZT) – a standard indicator of a material’s thermoelectric properties for use in cooling systems. The evaluation of ZT is principally determined by the thermoelectric characteristics of the nanomaterials. In this paper, a set of investigative computations was performed to study the thermoelectric properties of monolayer TMDCs according to the semiclassical treatment of the Boltzmann transport equation. It was confirmed that the thermoelectric properties of 2D materials can be greatly improved compared with their bulk properties. Calculations show an improvement in the power factor for the TMDCs under consideration, and, thus, the ZT compared to the bulk state due to an improvement in the Seebeck modulus and electrical conductivity, without significantly affecting the thermal conductivity and negatively affecting the ZT. These materials show clear characteristic variations at room temperature, with the highest ZT values of 2.919 and 2.873 obtained for WSe2 and WS2, respectively.
In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
The aim of this study was to investigate the effectiveness of binary solvent for regeneration of spent lubricating oil by extraction-flocculation process. The regeneration was investigated by bench scale experiments by using locally provided solvents (Heavy Naphtha, n-Butanol, and iso-Butanol). Solvents to used oil, mixing time, mixing speed and temperatures were studied as operating parameters. The performance on three estimated depended key parameters, namely the percentage of base oil recovered (Yield), percent of oil loss (POL), and the percent of sludge removal (PSR) were used to evaluate the efficiency of the employed binary solvent on extraction process. The best solvent to solvent ratio for binary system were 30:70 for Heavy Naph
... Show MoreIn this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreNeonatal sepsis refers to the bacterial bloodstream infections of the newborn during the neonatal period as usually the first twenty-eight days of life. The current study was done in the laboratories of AL-Batool Teaching Hospital for Gynecology and Pediatrics in Baqubah, Diyala Governorate, including 140 blood specimens collected from the neonates admitted to the hospital with suspected sepsis, the ages of the both groups was ranged from 1 day to 28 days. Out of the total cultured samples, 32.14% (45 of 140) were positive and 67.86% (95 of 140) were negative blood culture. 45 of 140 samples were negative to the blood culture chosen as control group. The results showed highest isolates were Coagulase Negative Staphylococcus (CoNS) 19 (42.2%
... Show MoreThis research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.
A Mini-TEA CO2 laser system was designed and operated to obtain a pulse at 10.6 μm. Output energy of 30 mJ, with preionization pins, and pulse duration of 100ns were obtained. While an output energy of 6mJ and pulse duration of 100 ns in absence of pre-ionization were obtained. The system was operated with Ernest profile main-discharge electrodes. Dependencies of supply voltage and output laser energy on the pressure inside laser cavity were investigated as well as dependencies of supply voltage and output energy on the main capacitor(8CO2 : 8N2 : 82He :2CO). Efficiency of was calculated to be 4.4%.
Thin films of the blended solution of (NiPc/C60) on glass substrates were prepared by spin-coated method for three different ratios (100/1, 100/10 and 100/100). The effects of annealing temperature and C60 concentration on the optical properties of the samples were studied using the UV-Vis absorption spectroscopy and FTIR spectra. The optical absorption spectrum consists of two main bands, Q and B band, with maxima at about (602-632) nm and (700-730) nm for Q1 and Q2 respectively, and (340-375) nm for B band. The optical energy gap were determined from optical absorption spectra, The variation of optical energy gap with annealing temperature was nonsystematic and this may be due to the improvement in crystal structure for thin films. Whi
... Show Morein this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.