Background: The rapid evolution of Artificial Intelligence (AI) has significantly influenced Education, demonstrating substantial potential to transform traditional teaching and learning methods. AI reshapes teacher-student interactions and the relationship with knowledge. Objective: To analyze the potential benefits, ethical challenges, and limitations of AI in Education based on recent scientific literature, emphasizing the balance between technology and human interaction. Methods: A documentary research approach with a descriptive focus was employed, following the PRISMA protocol for systematic reviews. The search strategy involved analyzing evidence from 18 scientific articles published within the last six years. Results:AI offers several advantages in Education, including: Personalization: Innovative and adaptive solutions enable individualized learning experiences. Feedback: Instant and accurate feedback facilitates improved student understanding.However, ethical challenges such as data privacy, equitable access to technology, and the role of educators persist. Conclusions: AI holds promise as a valuable tool for modern Education, enhancing learning personalization and outcomes. However, it cannot replace educators and requires ethical considerations and equitable access. Finding a balance between AI and human interaction is essential for effective integration. Addressing these challenges will maximize AI's potential benefits in 21st-century Education.
This research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show MoreThe current research aims to train students to take benefit of their studies to analyze and taste the artistic works as one of the most important components of the academic structure for students specializing in visual arts; then to activate this during training them the methods of teaching. Consequently, the capabilities of mind maps were employed as a tool that would be through freeing each student to analyze a model of artistic work and think about his analytical principles according to what he knows. Then, a start-up with a new stage revolves around the possibility of transforming this analysis into a teaching style by thinking about how the student would do. The same person who undertook the technical analysis should offer this work
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreAs population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some
... Show MoreBrain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show MoreThe manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreBackground Rectal cancer is one of the most common malignant tumors of gastrointestinal tract. Combining chemotherapy with radiotherapy has a sound effect on its management.
Objectives Assessment the patterns of characterizations of rectal cancer. Evaluation of the efficacy, and long-term survival of pre-/ postoperative chemoradiation. Collecting all eligible evidence articles and summarize the results.
Methods By this systematic review and meta-analysis study, we include data of chemoradiation of rectal cancer articles from 2015 until 2019. The research was carried out at Baghdad Medical City oncology centers. Accordance with the