Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of various methodologies in the field was created. Unlike previous studies that focused on picture splicing or copy-move detection, this study intends to investigate the universal type-independent strategies required to identify image tampering. The work provided analyses and evaluates several universal techniques based on resampling, compression, and inconsistency-based detection. Journals and datasets are two examples of resources beneficial to the academic community. Finally, a future reinforcement learning model is proposed.
Begomoviruses infecting zucchini squash were investigated. Leaf samples were collected from zucchini squash growing areas in Baghdad (Jhadryaa and Yusufiyah), Babylon (Jibela and Mahmudiyah) and Diyala (Khan Bani Saad) Provinces. Samples were screened for the presence of begomoviruses using polymerase chain reaction (PCR) and Deng genus specific primers. Sixteen out of 40 samples were begomovirus positive. Sequence analysis confirmed the detection of Tomato leaf curl Palampur virus (TLCPALV)
This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet
... Show MoreThe main target of the current study is to investigate the microbial content and mineral contaminants of the imported meat available in the city of Baghdad and to ensure that it is free from harmful bacteria, safe and it compliances with the Iraqi standard specifications. Some trace mineral elements such as (Iron, Copper, Lead, and Cadmium) were also estimated, where 10 brands of these meats were collected. Bacteriological tests were carried out which included (total bacterial count,
Beta-thalassemia major (β-TM) is inheritable condition with many complications especially in children. The blood-borne viral infection was proposed as a risk factor due to recurrent blood transfusion regimen (hemotherapy).
This study aimed to investigate Human parvovirus B19 (PVB19) prevalence in β-TM patients by serological and molecular means.
This is a cross-section
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe current research tries to identify the employment of the digital technology in the formation of the theatrical show space. The researcher started with the significant importance of the digital technology and its workings in the formation of the contemporary theatrical show being a modern, artistic, aesthetic, intellectual and technological means to convey the topic in an integrated manner, as well as its close connection with the creative directive vision and the creative designing vision. It provides a variety of models of numerous implications in terms of transmission and advancement of the relationships represented by clarifying the scenography and dramatic conflict forms according to the numerous motivations of the directo
... Show More
The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla
... Show More