Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of various methodologies in the field was created. Unlike previous studies that focused on picture splicing or copy-move detection, this study intends to investigate the universal type-independent strategies required to identify image tampering. The work provided analyses and evaluates several universal techniques based on resampling, compression, and inconsistency-based detection. Journals and datasets are two examples of resources beneficial to the academic community. Finally, a future reinforcement learning model is proposed.
Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe research aims to demonstrate the impact of tax techniques on the quality of services provided to income taxpayers by studying the correlational and influencing relationships between the exploited variable (tax techniques) and the dependent variable (the quality of services provided to income taxpayers), and in line with the research objectives, the main hypothesis of the research was formulated (there is a relationship Significance between tax techniques and the quality of services provided to income taxpayers) a number of sub-hypotheses emerged from this hypothesis that were stated in the research methodology, and a number of conclusions were reached, the most important of which were (through the use of the correlation coeff
... Show MoreEmbedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
A comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
The impact of digital transformation on the relationship between commercial bank customers’ empowerment and competitive advantage
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreScams remain among top cybercrime incidents happening around the world. Individuals with high susceptibility to persuasion are considered as risk-takers and prone to be scam victims. Unfortunately, limited number of research is done to investigate the relationship between appeal techniques and individuals' personality thus hindering a proper and effective campaigns that could help to raise awareness against scam. In this study, the impact of fear and rational appeal were examined as well as to identify suitable approach for individuals with high susceptibility to persuasion. To evaluate the approach, pretest and posttest surveys with 3 separate controlled laboratory experiments were conducted. This study found that rational appeal treatm
... Show More