Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of various methodologies in the field was created. Unlike previous studies that focused on picture splicing or copy-move detection, this study intends to investigate the universal type-independent strategies required to identify image tampering. The work provided analyses and evaluates several universal techniques based on resampling, compression, and inconsistency-based detection. Journals and datasets are two examples of resources beneficial to the academic community. Finally, a future reinforcement learning model is proposed.
The goal of the research is to theoretically establish the variable of brilliant leadership and explain the importance of this variable and the philosophical orientation of researchers in taking it as an original variable in their research as an independent variable. The descriptive approach and theoretical framing of brilliant leadership were followed. We relied on secondary data represented by books, dissertations, dissertations, scientific research, and the information network (the Internet) as a tool for collecting data. The scientific value was represented by the importance of consolidating brilliant leadership and reviewing the most important things that were confirmed by the research and studies that dealt with this research.
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreHuman skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu
... Show MoreFe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreThe aim of the research is to identify the extent of the ability to ensure the integrated reports by the auditor in verifying the credibility of these reports, and their implications for the benefit of all parties dealing with the economic unit, as well as measuring the impact of the assurance procedures followed by the auditors and their role in confirming these reports.
The research methodology was designed after studying the previous literature related to the research variables, and then the relationship between these variables was tested, through the use of a questionnaire list. A questionnaire targeting the community of auditors in the local environment, and the results of the study wer
... Show MoreThe summary:
This research paper presents a standard economic study. This study aims to build an economic standard form of the investment effect in Human Capital on Economic Growth in Algeria. The study showed that there is an inverse relationship between the investment and human capital. This is expressed by expending on education and economic growth. This contradicts with the economic theory. Such matter could be explained by that expending on education does not contribute in the economic growth. This refers to that the education sector result does not employee or save jobs. Thus, it does not contribute in growth; in addition, the Algerian economy depends on petrol in the first class. This means the ab
... Show More