يهدف البحث الى أعداد بعض تمرينات الاساسية لسلاح الشيش بأستخدام المرايا في تطوير قدرة مستوى تعلم الطالبات في المبارزة ومعرفة الفروق بين المجموعتين التجريبي والضابطة بتأثير استخدام المرايا في مستوى اداء بعض مهارات سلاح الشيش لطالبات المرحلة الثالثة , وقد أستخدمت الباحثتان المنهج التجريبي على عينة من طالبات المرحلة الثالثة , وقد بلغ عددهم (45) طالبة , وقد خرجت الباحثتين بعدة أستنتاجات وهي:- - أن المنهاج التعليمي باستخدام المرايا ذو تأثير ايجابي في تطوير مستوى اداء مهارات سلاح الشيش لطالبات كلية التربية الرياضية للبنات بالمبارزة . - وجود فروق معنوية بين الاختبار القبلي والبعدي في مستوى اداء مهارات سلاح الشيش ولصالح الاختبار ألبعدي. - وجود فروق معنوية في الاختبار البعدي بين المجموعة التجريبية والضابطة في مستوى اداء مهارات سلاح الشيش ولصالح المجموعة التجريبية . وتوصلت الباحثتين الى عدة توصيات منها:- - استخدام المرايا في الوحدات التعليمية والتدريبية لطالبات المرحلة الثالثة بالمبارزة لها دور فعال في تطوير مهارات سلاح الشيش . - استخدام أجهزة تقنية حديثة لتطوير مهارات سلاح الشيش .
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
A new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1 HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral geometry for ZnII, C
... Show MoreIn this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show MoreWe study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show More