Preferred Language
Articles
/
7RaPLocBVTCNdQwCDTv3
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
...Show More Authors
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures near the wellbore, combined with low matrix permeability and reservoir heterogeneity; and consequently the interpretation of well test or pressure transient data using the classical approaches usually used for conventional reservoirs can produce wrong results with high level of uncertainties. In addition, the time required to achieve radial flow regimes for such tight reservoir, as key condition to use classical approaches, is impractically long and not feasible from the context of both economic and practical operation viewpoint. These inherent causes and the operating limitations require amendment of the well test technique to analyse linear or elliptical flow regimes to accurately estimate the reservoir and fracture properties.</p><p>This paper proposed a simplified numerical approach to predict the reservoir and fracture parameters based upon well test or production data from hydraulic fractured vertical well in tight gas reservoir considering elliptical flow regime. Emphases are given on the development of simple computation tool that can be used as a handy, efficient and accurate tool to supplement the need for commercial simulators; yet can provide with estimation of reservoir and fracture properties with high level of accuracy especially in the case when limited pressure transient data is available.</p>
Scopus Crossref
View Publication
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Engineering
Prediction of Heat Transfer Coefficient and Pressure Drop in Wire Heat Exchanger Working with R-134a and R-600a
...Show More Authors

An experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Numerical Study of Thermal Conductivity Effect on The Performance of Thermal Energy Storage
...Show More Authors

In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Influence of the annealing time on the structural properties for Flash evaporated InSb films
...Show More Authors

Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Study the effects of bromothymol blue material on the optical properties for polystyrene (PS).
...Show More Authors

Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
prediction Capacity of Euphrates River at Assamawa City
...Show More Authors

The reduction in the rivers capacity is one the most important issue to give the decision maker an idea during the flood season. The study area included the rivers of the Al Atshan, Al Sabeel and Euphrates, which are surveyed with a length of 21, 5 and 20 km respectively. The Euphrates , the Atshan and Al Sabeel rivers were simulated by using HEC-RAS 5.0.3 software to study the real condition within the city of Assamawa. As well as the simulation was implemented by modifying the cross sections of the Euphrates and Al Sabeel rivers to increase their capacity to 1300 and 1200 m3/s respectively which are a flood discharges100 year return periods. The results showed that the maximum discharge capacity under real conditions o

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental and Numerical Analysis of Laser Surface Melting by Using Enthalpy Method
...Show More Authors
Abstract<p>In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3<italic>ms</italic>, wavelength 1064nm, laser energies 1.5, 2. 6 and 4.3 J, laser beam diameter is 0.6 mm and spot diameter 0.78 mm was applied a low carbon steel type St37 with a dimension 10, 10, 3 mm, length, width and thickness respectively. Numerical analysis side consist of a mathematical model and calculating a thermal cycle by using equation in the enthalpy method applied to determine the cooling rate in fusion zone. The simulation by using the enthalpy method, applied on conduction heat transfer </p> ... Show More
View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
J. Baghdad For Sci
Numerical Simulations of Imaging Extrasolar Planets using Circular and Square Apodize Apertures
...Show More Authors

Numerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.

Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Study of Collector Geometry Effect on Solar Chimney Performance
...Show More Authors

There have been many advances in the solar chimney power plant  since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated  to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve go

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Theoretical Study of the Energy Flow of a Two Stages Four Generators Adsorption Chiller
...Show More Authors

This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C.  As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power

... Show More
View Publication Preview PDF
Crossref (1)
Crossref