The important parameter used for determining the probable application of miscible displacement is the MMP (minimum miscibility pressure). In enhanced oil recovery, the injection of hydrocarbon gases can be a highly efficient method to improve the productivity of the well especially if miscibility developed through the displacement process. There are a lot of experiments for measuring the value of the miscibility pressure, but they are expensive and take a lot of time, so it's better to use the mathematical equations because of it inexpensive and fast. This study focused on calculating MMP required to inject hydrocarbon gases into two reservoirs namely Sadi and Tanomaa/ East Baghdad field. Modified Peng Robenson Equation of State was used to estimate MMP values for the two samples. The parameters of this equation have been tuned by splitting the plus component and regression process to obtain the best match for PVT properties between the calculated and that measured in the laboratory. Then the MMPs value compared with the results most reliable correlation. Ternary diagram for these samples has been constructed to illustrate the occurrence of miscibility.
In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Dam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreResearch on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha
... Show MoreBackground: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show MoreBACKGROUND: Acute coronary syndrome (ACS) is the clinical manifestation of acutely diminished coronary arterial blood supply. The rate of increase of intraventricular pressure during isovolumetric contraction (left ventricular dP/dt) represents the rate of change of pressure during ejection. OBJECTIVE: The aim of this study is to evaluate the usefulness of the rate of increase of intraventricular pressure during isovolumetric contraction (dP/dt) in assessment of left ventricular function in patients with acute coronary syndrome and its relation to certain clinical and echocardiographic features. PATIENTS AND METHODS: The study is a cross sectional study including 50 patients with an established diagnosis of acute coronary syndrome. The
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show More