oday deep ocean life has not been discovered by humans including many secret world things to be explored. The researcher has focused on underwater optical wireless communications using various kinds of complex digital Signal processing most of them used in air and starting applied in underwater communication. The Internet of Things (IoT) uses underwater called Internet of Underwater Things (IoUT) applications to explore the underwater world with other devices. However, the difference in concentration between air and water surfaces is not easy making wireless communication more complicated. Visible light passes the water's surface with scattering and distortion inside the water and each color of light has different attenuation the blue laser light has low distortions and scattering which means lower attenuation in water. The Non-Orthogonal Multiple Access (NOMA) is a promising next-generation underwater wireless optical communications technology. Moreover; this technology has many features such as low (power consumption, attenuation, noise, and BER (Bit Error Rate)) with a high bit rate. Therefore; our research proposes a blue laser optical communication system for drone-to-underwater vehicles by optical NOMA techniques that can support various important applications for marine exploration or inspection, This technology uses an underwater Remote Operating Vehicle (ROV) combined with a Drone to collect data information from deep oceans to study and discover the secret deep ocean underwater world with high-quality video and picture. In addition, studying the effect of different weather and water types on the proposed model.
The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreBackground:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreHuman cytomegalovirus (HCMV) infection is ubiquitous and successfully reactivated in patients with immune dysfunction as in patient with multiple myeloma (MM), causing a wide range of life-threatening diseases. Early detection of HCMV and significant advances in MM management has amended patient outcomes and prolonged survival rates.
The aim of the study was to estimate the frequency of active HCMV in MM patients.
This is a case–control study involved 50 MM patients attending Hematology Center, Bag
Human serum albumin (HSA) nanoparticles have been widely used as versatile drug delivery systems for improving the efficiency and pharmaceutical properties of drugs. The present study aimed to design HSA nanoparticle encapsulated with the hydrophobic anticancer pyridine derivative (2-((2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyrimidin-3-yl)methylene)hydrazine-1-carbothioamide (BIPHC)). The synthesis of HSA-BIPHC nanoparticles was achieved using a desolvation process. Atomic force microscopy (AFM) analysis showed the average size of HSA-BIPHC nanoparticles was 80.21 nm. The percentages of entrapment efficacy, loading capacity and production yield were 98.11%, 9.77% and 91.29%, respectively. An In vitro release study revealed that HSA-BIPHC nan
... Show MoreIn this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
Water quality planning relies on Biochemical Oxygen Demand BOD. BOD testing takes five days. The Particle Swarm Optimization (PSO) is increasingly used for water resource forecasting. This work designed a PSO technique for estimating everyday BOD at Al-Rustumiya wastewater treatment facility inlet. Al-Rustumiya wastewater treatment plant provided 702 plant-scale data sets during 2012-2022. The PSO model uses the daily data of the water quality parameters, including chemical oxygen demand (COD), chloride (Cl-), suspended solid (SS), total dissolved solids (TDS), and pH, to determine how each variable affects the daily incoming BOD. PSO and multiple linear regression (MLR) findings are compared, and their perfor
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreCancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show More