Abstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to 3.43 dBi at maximum. The antenna size is compacted to a 32 mm × 24 mm using a fractal-shaped MTM when mounted on the INP substrate with a relative permittivity ɛr = 3.106−j0.0314 and a relative permeability µr = 1.548−j0.0907. Finally, the maximum obtained voltage from the proposed antenna is found about 2 V at 2.45 GHz and 2.5 V at 5.8 GHz, where, the corresponding measured equivalent isotropic radiated power is about 2.35 W at 2.45 GHz and 6.12 W at 5.8 GHz.
Abstract
This study investigates the mechanical compression properties of tin-lead and lead-free alloy spherical balls, using more than 500 samples to identify statistical variability in the properties in each alloy. Isothermal aging was done to study and compare the aging effect on the microstructure and properties.
The results showed significant elastic and plastic anisotropy of tin phase in lead-free tin based solder and that was compared with simulation using a Crystal Plasticity Finite Element (CPEF) method that has the anisotropy of Sn installed. The results and experiments were in good agreement, indicating the range of values expected with anisotropic properties.
Keywords<
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreSnS nanobelt thin films were deposited on glass substrates in acidic solution by chemical bath deposition (CBD) method. The belt-like morphologies of as-deposited SnS thin films were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) and Raman measurements were carried out to confirm the crystal structures and phase purities of SnS nanobelt thin films. The morphologies and phase purities of SnS thin films were influenced greatly by the tin and sulfur precursors. The bandgaps of SnS nanobelts were determined to be 1.39–1.41 eV by UV–vis absorption and photoluminescence (PL) spectra. Current-voltage ((I-V)) and current-time ((I-T)) characteristics were studied to demon
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreMetal-organic frameworks (MOFs) are a relatively new class of materials of unique porous structures and exceptional properties. Currently, more than 110,000 types of MOFs have been reported among the countless possibilities. In this study, we have synthesised a novel MOF using zirconium chloride as the metal source and 4,4'-dicarboxy-2,2'-biquinoline (bicinchoninic acid disodium salt) as the linker, which reacted in N,N-Dimethylformamide (DMF) solvent. Three preparation methods were employed to prepare five types of the MOF, and they were compared to optimize the synthesis conditions. The resulting MOFs, named Zr-BADS, were characterised using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microscopy, and
... Show MoreTransparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreIn this paper, the characteristics of microstrip monopole antennas are studied firstly in free space. Secondly, the effects of the human body on the studied antenna's performance are investigated for wearable communications. Different patch shapes of microstrip monopole antenna are chosen to operate at two bands: industrial scientific and medical band (ISM) and ultra-wideband (UWB) for wearable applications. The studied antenna consists of a radiating element on one side of the substrate and a partial ground plane on the other side. The antenna is supposed to fabricate on cloth fabric whose relative dielectric constant is Ɛr =1.7. At the same time, the pure copper could be used as the conducting part representing both t
... Show MoreIn this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on
... Show MoreThis paper presents the electrical behavior of the top contact/ bottom gate of an organic field-effect transistor (OFET) utilizing Pentacene as a semiconductor layer with two distinctive gate dielectric materials Polyvinylpyrrolidone (PVP) and Zirconium oxide (ZrO2) were chosen. The influence of the monolayer and bilayer gates insulator on OFET performance was investigated. MATLAB software was used to simulate and determine the electrical characteristics of a device. The output and transfer characteristics were studied for ZrO2, PVP and ZrO2/PVP as an organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric ZrO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively
... Show More