Preferred Language
Articles
/
7BYU5IsBVTCNdQwCGeMe
Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells
...Show More Authors

The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of Deep Bayesian Neural Network (DBNN) for the personalized treatment of leukemia cancer has shown a significant tested accuracy for the model. DBNNs used in this study was able to classify images with accuracy exceeding 98.73%. This study depicts that the DBNN can classify cell cultures only based on unstained light microscope images which allow their further use. Therefore, building a bayesian‐based model to great help during commercial cell culturing, and possibly a first step in the process of creating an automated/semiautomated neural network‐based model for classification of good and bad quality cultures when images of such will be available.

Scopus Crossref
View Publication
Publication Date
Thu Sep 01 2016
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Performance evaluation of heterogeneous network based on RED and WRED
...Show More Authors

Scopus (3)
Scopus
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
Evaluation of Electrolytes Disturbances in Iraqi Chronic Myeloid Leukemia Patients treated with Nilotinib with Monitoring of Response by FISH Study
...Show More Authors

Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the presence Philadelphia chromosome (Ph) which was created by a reciprocal translocation between chromosomes 9 and 22 (t [9;22] [q34;q11]. The approval of the 2nd generation TKI ( Nilotinib) takes the treatment of CML patients into new erea with more efficiency and mild to moderate adverse effects. This study was aimed at evaluation of molecular cytogenetic response by (FISH) for Nilotinib in Iraqi patients with assessment for electrolytes disturbances of Nilotinb by measuring a panel of electrolyte (Na+, K+, Ca++, PO4--- and Mg++) , where thirty Iraqi patients with CML who have resistance or no response to Imatinib treatment, attending to Baghdad Teaching Ho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution
...Show More Authors

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
Studying the Effect of Permeability Prediction on Reservoir History Matching by Using Artificial Intelligence and Flow Zone Indicator Methods
...Show More Authors

The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Aug 02 2012
Journal Name
International Journal Of Advanced Research In Computer Science
User Authentication based on Keystroke Dynamics Using Backpropagation Network
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi

... Show More
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Iraqi Journal Of Hematology
Comparison of circulating matrix metalloproteinase-2 levels in untreated acute myeloid leukemia patients with remission status
...Show More Authors

The study aimed to evaluate the level of MMP‑2 in acute myeloid leukemia (AML) patients in comparison with that in remission status, and healthy subjects, and to find its correlation with hematologic parameters. This study included sixty newly diagnosed AML patients. Remission status was assessed after induction chemotherapy. The overall survival (OS) was determined after 6 months. The plasma MMP‑2 level was measured at diagnosis by enzyme immunoassay. Twenty‑eight healthy individuals were recruited as a control group. Plasma MMP‑2 was higher in AML patients than in healthy individuals (P = 0.005). The level of MMP‑2 was much higher in the M5 subtype than in the other subtypes (P = 0.0001). There was no statistically significant d

... Show More
View Publication
Crossref (2)
Clarivate Crossref