The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of Deep Bayesian Neural Network (DBNN) for the personalized treatment of leukemia cancer has shown a significant tested accuracy for the model. DBNNs used in this study was able to classify images with accuracy exceeding 98.73%. This study depicts that the DBNN can classify cell cultures only based on unstained light microscope images which allow their further use. Therefore, building a bayesian‐based model to great help during commercial cell culturing, and possibly a first step in the process of creating an automated/semiautomated neural network‐based model for classification of good and bad quality cultures when images of such will be available.
Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic
... Show MoreWith the fast-growing of neural machine translation (NMT), there is still a lack of insight into the performance of these models on semantically and culturally rich texts, especially between linguistically distant languages like Arabic and English. In this paper, we investigate the performance of two state-of-the-art AI translation systems (ChatGPT, DeepSeek) when translating Arabic texts to English in three different genres: journalistic, literary, and technical. The study utilizes a mixed-method evaluation methodology based on a balanced corpus of 60 Arabic source texts from the three genres. Objective measures, including BLEU and TER, and subjective evaluations from human translators were employed to determine the semantic, contextual an
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.
Background: Tooth eruption is a more general process, however, which includes certain posteruptive tooth movements. There are two fundamental requirements for both tooth eruption to occur: (1) Require soft tissue, intervening between tooth structure and alveolar bone, which plays an important role in regulating the remodeling of adjacent tissues. (2) Require bone turnover that is temporally and spatially regulated to facilitate specific translocations of teeth through alveolar bone These amniotic stem cells are multipotent and able to differentiate into various tissues, which may be useful for human application and recently it used in many medical branches. CD34 is an endothelial marker that is extensively used in immunohistochemistry a
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreIn this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial co
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreThe study aimed to establish the association of miR-153-3p expression with treatment response to IM in CML patients. Sixty CML patients were included and divided into two groups consistent with their response to treatment whether sensitive or resistant to IM. Ten healthy normal participants were enrolled as control group. RNA was extracted from serum to work out miR-153-3p expression utilizing real-time quantitative reverse transcription polymerase chain reaction. The primers were supplied by Macrogen Inc. Twenty seven patients were sensitive to imatinib and 33 were resistant to imatinib. The ratio of male to female was 1.14:1. The bulk (58%) of patients were within the age range of 41-60 years. Weight and gender did not significantly diffe
... Show More