The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created complex.
Objective Neutrophils own an arsenal of dischargeable chemicals that enable them to handle bacterial challenges, manipulating innate immune response and actual participation in acquired immunity. The reactive oxygen species (ROS) are one of the most important chemicals that neutrophils discharge to eradicate pathogens. Despite their beneficial role, the ROS were strongly correlated to periodontal tissue destruction. Lowdensity neutrophils (LDN) have been recognized for producing enhanced quantities of ROS. However, the potential role of ROS produced by LDN in periodontitis is unknown. The aim of the study was to investigate the impact of ROS produced by LDN in periodontal diseases.
Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-ho
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
The present study tackles the complex issue of the urgent need for Environmental Auditing (EA) in Iraq in the absence of laws that support environmental management and in the light of the high rates of cancerous diseases in Iraq, which coincided significantly with the increase in oil production, according to the numbers indicated in the Iraqi Ministry of Health. The study aimed to investigate the mediating role of Management Systems (MS) related to the role of EA supporting sustainability reports concerning the reduction of the negative effects of gas emissions from oil companies. We adopted the descriptive approach which relies on studying relationships through a questionnaire that was distributed to a group of workers at Doura Refinery in
... Show MoreAlthough the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory