This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
Abstract Portable communication devices such as WLAN, WiMAX, LTE, ISM, and 5G utilize one or more of the triple bands at (2.32.7 GHz,3.4–3.6GHz,and5–6GHz)andsufferfromtheeffectofmultipathproblemsbecausetheyareusedinurbanregions.To date, no one has performed a review of the antennas used for these types of wireless communications. This study reviewed two types of microstrip antennas (slot and fractal) that have been reported by researchers (as a single element) using a survey that included the evaluation of several important specifications of the antennas in previous research, such as operating bandwidth, gain, efficiency, axial ratio bandwidth (ARBW), and size. The weaknesses in the design of all antennas were carefully identified to de
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show MoreKrawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreThis research presents a new algorithm for classification the
shadow and water bodies for high-resolution satellite images (4-
meter) of Baghdad city, have been modulated the equations of the
color space components C1-C2-C3. Have been using the color space
component C3 (blue) for discriminating the shadow, and has been
used C1 (red) to detect the water bodies (river). The new technique
was successfully tested on many images of the Google earth and
Ikonos. Experimental results show that this algorithm effective to
detect all the types of the shadows with color, and also detects the
water bodies in another color. The benefit of this new technique to
discriminate between the shadows and water in fast Matlab pro