The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreThis research presents the concepts of compatibility and edge spaces in
Form the series of generalization of the topic of supra topology is the generalization of separation axioms . In this paper we have been introduced (S * - SS *) regular spaces . Most of the properties of both spaces have been investigated and reinforced with examples . In the last part we presented the notations of supra *- -space ( =0,1) and we studied their relationship with (S * - SS *) regular spaces.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
In this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
The primary objective of this research be to develop a novel thought of fibrewise micro—topological spaces over B. We present the notions from fibrewise micro closed, fibrewise micro open, fibrewise locally micro sliceable, and fibrewise locally micro-section able micro topological spaces over B. Moreover, we define these concepts and back them up with proof and some micro topological characteristics connected to these ideas, including studies and fibrewise locally micro sliceable and fibrewise locally micro-section able micro topological spaces, making it ideal for applications where high-performance processing is needed. This paper will explore the features and benefits of fibrewise locally micro-sliceable and fibrewise locally
... Show MoreIn this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.