Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity of the coating layer and calcium-to-phosphate ratio and composition. Results showed that the laser power and scanning speed influenced coating adherence. The cross-sectional field-emission scanning electron microscopy images at low power and high speed showed poor adherence and improved as the laser power increased to 2 kW. Decreasing the scanning speed to 0.2 mm/s at the same power of 2 kW increased adherence. EDX results of the substrate demonstrated that the chemical composition of the coat layer did not change after processing. Moreover, the maps revealed proper distribution of Ca and P with some agglomeration on the surface. The sharp peaks on the X-ray diffraction patterns indicated that β-TCPs in the coat layer were mostly crystalline. The elastic modulus was low at the surface and increased gradually with depth to reach 19 GPa at 200 nm; this value was close to that of bone. The microhardness of the coated substrate increased by about 88%. The laser pulse energy of 8.3 J, pulse peak power of 2 kW, pulse duration of 4.3 min, repetition rate of 10 Hz and scanning speed of 0.2 ms−1 yielded the best results. Conclusion: Both processing and coating have potential use for dental implant applications.
Background: Hypertension is a major global health concern that increases the risk of cardiovascular disease. Understanding the impact of age and treatment types on blood pressure control is essential for optimizing therapeutic strategies. Aim: This study aims to assess how different treatment types and patient age influence blood pressure control in hypertensive patients. Methodology: A binary logistic regression model was employed to analyze data from 48 patients diagnosed with hypertension. The study investigated the impact of two treatment regimens and patient age on the likelihood of achieving optimal blood pressure levels. The statistical significance of the findings was evaluated using chi-square tests and p-values. Results: T
... Show MoreThe research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water. Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using T
... Show MoreThis study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show Moreلمقدمة
الحمد لله رب العالمين والصلاة والسلام على سيد الأنبياء والمرسلين نبينا محمد صلى الله عليه وسلم وعلى واصحابه أجمعين ومن تبعهم وأهتدى بهداهم الى يوم الدين اما بعد :
فوظيفة القضاء وظيفة سامية يراد منها اقامة العدل ولا يستقيم حالهم الا به دفعاّ للظلم ، ولقد اولى النبي صلى الله عليه وآله وسلم ومن بعده الخلفاء الراشدون
... Show MoreIn this work, yttrium oxide particles (powder) reinforced AL-Si matrix composites (Y2O3/Al-Si) and Chromium oxide particles reinforced AL-Si matrix composites (Cr2O3/AL-Si) were prepared by direct squeeze casting. The volume percentages of yttrium oxide used are (4, 8.1, 12.1, 16.1 vol %) and the volume percentages of the chromium oxide particles used are (3.1, 6.3, 9.4, 12.5 vol. %). The parameters affecting the preparation of Y2O3/Al-Si and Cr2O3/AL-Si composites by direct squeeze casting process were studied. The molten Al-Si alloy with yttrium oxide particles or with chromium oxide particles was stirred again using an electrical stirrer at speed 500 rpm and the molten alloy was poured into the squeeze die cavity. Th
... Show MoreIn this time, most researchers toward about preparation of compounds according to green chemistry. This research describes the preparation of 2-fluoro-5-(substituted benzylideneamino) benzonitrile under reflux and microwave methods. Six azomethine compounds (B1-6) were synthesized by two methods under reflux and assisted microwave with the comparison between the two methods. Reflux method was prepared of azomethine (B1-6) by reaction of 5-amino-2-fluorobenzonitrile with some aldehyde derivatives with (50–100) mL of absolute ethanol and some quantity of GAA and time is limited between (2–5) hours with a yield between (60–70) percent with recrystallization for appropriate solvents. But the microwave-assisted method was synthesized of co
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show More