This research is mainly about the Arabic poetical work of the poet “Fadhuli AL-Baghdadi ». It aims to show the poetic purposes used like (advice, flirting and praise). This research sheds some lights on how the poetical work was hardly found because it has only one copy, which is originally a transcript
This study analyses AL-Baghdadi's poems, as well as Sheding some lights on earlier life and his other compositions, AL-Baghdadi is considered a tri-lingual poet who wrote in Turkish, Arabic and persian. His Surname as "AL- Baghdadin was as mentioned by some historians, due to his being born in Baghdad or to All a resident in Baghdad at that some poets, who wrote in Arabic have been mentioned here also, like The judge Burhan Al-
... Show MoreThis research deals with an aesthetic discourse that depends on the expressive connotations and the aesthetics of its formation in sculpture, The sculptural works of the artist Saad Al-Basri were chosen as a model, Therefore, it deals with a contemporary plastic topic that benefits art education students and plastic arts students, The method of using materials and their formation methods has evolved and the great change that took place in the taste has developed, As the more knowledge and viewing of artworks increases in research and studies, it leads to an increase in aesthetic taste and aesthetic sense, which is reflected in the artistic achievements of students in the implementation of their work, A field study was conducted to
... Show MoreWe introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
This study emphasizes the infinite-boundary integro-differential equation. To examine the approximate solution of the problem, two modified optimization algorithms are proposed based on generalized Laguerre functions. In the first technique, the proposed method is applied to the original problem by approximating the solution using the truncated generalized Laguerre polynomial of the unknown function, optimizing coefficients through error minimization, and transforming the integro-differential equation into an algebraic equation. In contrast, the second approach incorporates a penalty term into the objective function to effectively enforce boundary and integral constraints. This technique reduces the original problem to a mathematical optimi
... Show MoreCloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreIn their growth stages, cities become an aggregation of different urban contexts as a result of development or investment projects with other goals, which creates urban tension at several levels. Previous studies presented different approaches and methods to address specific aspects of urban stress, and thus contemporary visions and propositions varied, which required a field for research. The research, from a review of the proposals, the research problem emerged in need to study the indicators and trends of balanced urban development that address the tensions between different social, economic and urban contexts". Accordingly, the objective of the research is determined as "Building a comprehe
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.