In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete members with different partially prestressing ratios at serviceability and ultimate loading stages.
Fire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea
... Show MoreThe performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back a
... Show MoreReactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safet, IJSR, Call for Papers, Online Journal
In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show More