Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident light and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can
... Show MoreBuckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g
... Show MoreCritical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge
... Show MoreThe researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
The style of Free-form Geometry (FFG) has emerged in contemporary architecture within the last three decades around the world through the progress of digital design tools and the development of constructive materials. FFG is considered as the hard efforts of several contemporary architects to release their products from familiar restrictions to discover new and unfamiliar styles under the perspective of innovation. Many contemporary architects seek to recognize their forms and facilitate dealing with according to specific dimensional rules. The main research problem is the lack of knowledge, in the field of architecture, in previous literature about the formation processes in achievin
Simulation of free convection heat transfer in a square enclosure induced by heated thin plate is represented numerically. All the enclosure walls have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved stream function, vorticity, and energy equations by finite difference method using explicit technique and Successive Over- Relaxation method. The study was performed for different values of Rayleigh number ranging from 103 to 105 for different angle position of heated thin plate(0°, 45°, 90°). Air was chosen as a working fluid (Pr = 0.71). Aspect ratio of center of plate to the parallel left wall A2
... Show More