In recent years, the extensive need for high-quality acquisition platforms for various 3D mapping applications has rapidly increased, especially in sensor performance, portability, and low cost. Image-based UAV sensors have overwhelming merits over alternative solutions for their high timeline and resilience data acquisition systems and the high-resolution spatial data they can provide through extensive Computer Vision (CV) data processing approaches. However, applying this technique, including the appropriate selection of flight mission and image acquisition parameters, ground settings and targeting, and Structure from Motion- Multi-View Stereo (SfM-MVS) post-processing, must be optimized to the type of study site and feature characteristics. This research focuses on optimizing the application of UAV-SfM photogrammetry in an urban area on the east bank of the Tigris River in the north region of Iraq following optimized data capturing plan and SfM-MVS photogrammetric workflow. The research presented the practical application of optimized flight planning, data acquisition, image processing, accuracy analysis, and evaluation based on ground truth targets designed for the proposed optimal routine. This includes investigating the influence of the number and distribution of GCPs, flying heights, and processing parameters on the quality of the produced 3D data. The research showed the potential of low-budget and affordable UAV devices to deliver robust 3D products in a relatively short period by demonstrating the value of UAV-based image techniques when contributed to CV algorithms. The results showed powerful outcomes with validation errors reaching a centimeter-level from 100 m flying height when applying the optimized flight plan settings and the appropriate selection of the number and distribution of GCPs. The study established a streamlined UAV mapping procedure, demonstrated the viability of UAV use for 3D mapping applications, offered suggestions for enhancing future applications, and offered clues as to whether or not UAVs could serve as a viable alternative to conventional ground-based surveying techniques in accurate applications.
Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show MoreProducing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreImplementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.
Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show More