Preferred Language
Articles
/
6BbWJ4cBVTCNdQwCADoc
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficient between the actual and predicted values for fluoride concentration at the six locations, Al-Karakh, East Tigris, Al-Wathbah, AL-Karamah, Al-Rashid and Al-Wahda WTP intakes, was 0.93, 0.82, 0.86, 0.90, 0.83 and 0.89, respectively. Model verification results indicated that the model forecasting outputs rationally estimated the actual monthly fluoride content in the selected locations.

Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Geological Journal
A Predictive Model for Estimating Unconfined Compressive Strength from Petrophysical Properties in the Buzurgan Oilfield, Khasib Formation, Using Log Data
...Show More Authors

Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute

... Show More
View Publication
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
New records of Naidid worms (Oligochaeta: Naididae) in Euphrates River: Haifa J. Jaweir|Elham O.S. Al- Janabi
...Show More Authors

Naidid worms were sorted from 27 samples of aquatic macrophyta including ceratophyllum demersum , Potamogeton crispus and, Hydrilla verticellat with associated filamentous algae were collected from Euphrates River at Al-Mussayab city, 60 Km southwest Baghdad. The result of sorted worms revealed the presence of eight species of subfamily Naidinae, which are consider as new records for Iraq, including Stephensoniana trivandrana; Paranais frici, Ophidonais serpentine, Specaria josinae, Dero (Dero) evelinae , Dero (Aulophorus) indicus , Nais pseudobtusa and finally N. stolci. This investigation includes morphological descriptions for each species illustrated by identification criteria photos.

View Publication
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Advances In Physics Theories And Applications
Analysis and Assessment of Essential Toxic Heavy Metals, PH and EC in Ishaqi River and Adjacent Soil
...Show More Authors

This research was conducted to determine content levels of heavy metal pollution. Samples taken from Ishaqi River bank and adjacent agricultural soils area, in ten sites, distributed along 48 km of the Ishaqi River, north Baghdad. The evaluated metals were Zinc, Copper, Manganese, Iron, Cobalt, Nickel, Chromium, Cadmium, Vanadium and Lead. PH and Electric Conductivity (EC) were measured to evaluate the acidity and (EC). Results showed that most site were contaminated with metals evaluated. Among these metals, Zn, Mn, Fe and Ni were consistently higher in all the samples (both river bank and adjacent soil) followed by PB, CU, V, Cd, Co and Cr. The level concentrations of river bank were almost higher than that of adjacent soil. As will be re

... Show More
Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Development prediction algorithm of vehicle travel time based traffic data
...Show More Authors

This work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 22 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
MRI images series segmentation using the geodesic deformable model
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Sep 02 2017
Journal Name
Journal Of Engineering
Estimation Curve Numbers using GIS and Hec-GeoHMS Model
...Show More Authors

Recently, the development and application of the hydrological models based on Geographical Information System (GIS) has increased around the world. One of the most important applications of GIS is mapping the Curve Number (CN) of a catchment. In this research, three softwares, such as an ArcView GIS 9.3 with ArcInfo, Arc Hydro Tool and Geospatial Hydrologic Modeling Extension (Hec-GeoHMS) model for ArcView GIS 9.3, were used to calculate CN of (19210 ha) Salt Creek watershed (SC) which is located in Osage County, Oklahoma, USA. Multi layers were combined and examined using the Environmental Systems Research Institute (ESRI) ArcMap 2009. These layers are soil layer (Soil Survey Geographic SSURGO), 30 m x 30 m resolution of Digital Elevati

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Secure communications by chaotic carrier signal using Lorenz model
...Show More Authors

In this paper, the generation of a chaotic carrier by Lorenz model
is theoretically studied. The encoding techniques has been used is
chaos masking of sinusoidal signal (massage), an optical chaotic
communications system for different receiver configurations is
evaluated. It is proved that chaotic carriers allow the successful
encoding and decoding of messages. Focusing on the effect of
changing the initial conditions of the states of our dynamical system
e.i changing the values (x, y, z, x1, y1, and z1).

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Journal Of Soft Computing And Computer Applications
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.

... Show More
View Publication
Crossref