Porosity and permeability are the most difficult properties to determine in subsurface reservoir characterization. The difficulty of estimating them arising from the fact that porosity and permeability may vary significantly over the reservoir volume, and can only be sampled at well location. Secondly, the porosity values are commonly evaluated from the well log data, which are usually available from most wells in the reservoir, but permeability values, which are generally determined from core analysis, are not usually available. The aim of this study is: First, to develop correlations between the core and the well log data which can be used to estimate permeability in uncored wells, these correlations enable to estimate reservoir permeability at the "flow unit" scale. Second, generate spatial distributions of reservoir properties (porosity and permeability). These distributions of reservoir properties are the basis for a geological model that can be used to perform reservoir modeling and reservoir management tasks. The Alternating Conditional Expectation (ACE) technique has been used and tested in this study. ACE is classified as non-parametric method against the parametric methods which are represented by the traditional multiple regression. A comparison between these two methods shows the superiority of the ACE method correlations for four wells in an Iraqi oil field. General correlations for unit (a) and (b) are also presented. These correlations can be used to estimate permeability in uncored wells with a good approximation
Baker's Yeast is an important additive among the substances, which improves bred quality, thus, a consideration has been made to study the conditions and parameters that affecting the production of the yeast in a batch fermenter experimentally and theoretically. Experimental runs were implemented in a 12-liter pilot-scale fermenter to predict the rate of growth and other parameters such as amount of additive consumed and the amount of heat generated. The process is modeled and performed using a computer programming prepped for this purpose, the model gave a good agreement comparing to the experimental work specially in the log phase.
Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreIn this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency
Project management are still depending on manual exchange of information based on paper documents. Where design drawings drafting by computer-aided design (CAD), but the data needed by project management software can not be extracted directly from CAD, and must be manually entered by the user. The process of calculation and collection of information from drawings and enter in the project management software needs effort and time with the possibility of errors in the transfer and enter of information. This research presents an integrated computer system for building projects where the extraction and import quantities, through the interpretation of AutoCAD drawing with MS Access database of unit costs and productivities for the pricing and
... Show MoreThis paper presents the results of the slope failure analyses from fracture distributions and their relation to tectonic activity; the analytical results have indicated that the phenomena of plane failure, wedge failure and toppling failure can occur at almost of the survey sites within the study area.
The statistical data show that the fracture orientation mainly develop in the E-W, N-S and NW-SE due to the influence of tectonic activity. The occurrence of them together with the rock slope surface orientation has formed plane failure on the slope surface of the 3B highway in the E-W direction and the types of wedge failure and toppling failure on the slope surface of the highw
... Show MoreIn this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreIn this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.