The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration of 10 mg/L, CSFH mass of 0.2 g/100 mL dye solution, and temperature of 25 °C. According to findings of thermodynamic, adsorption process was a spontaneous, chemical, and endothermic with increased variability at the solid-solution interface during the stabilization of the reactive dyes onto the adsorption active sites. The second-order kinetic model fits the experimental results better, indicating that the chemisorption mechanism controls the adsorption of RB49 and RR195. Meanwhile, the Sips isotherm best fitted to RB49 and RR19, indicating that both heterogeneous and homogenous adsorptions occurred. The findings suggest that CSFH has potential use as an efficient and profitable adsorbent for removing reactive dyes from aqueous solutions.
This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
oday deep ocean life has not been discovered by humans including many secret world things to be explored. The researcher has focused on underwater optical wireless communications using various kinds of complex digital Signal processing most of them used in air and starting applied in underwater communication. The Internet of Things (IoT) uses underwater called Internet of Underwater Things (IoUT) applications to explore the underwater world with other devices. However, the difference in concentration between air and water surfaces is not easy making wireless communication more complicated. Visible light passes the water's surface with scattering and distortion inside the water and each color of light has different attenuation the blue laser
... Show MoreThe Na-alginate bead is commonly used in biotechnology fields such as adsorption due to ion exchange between Ca and Na with elements. Scanning electron microscopy (SEM-EDX) has proven to be a comparative method in the detections of these adsorbed elements, but the un-flat forming area of beads that can introduce impossible of the detection of element adsorbed. In contrast, X-ray fluorescence (XRF) documents analysis of elements, direct examination, which may analysis the adsorbents of elements. Here, this Study evaluated the possibility by using XRF for the direct analysis for examples of Cd and Ag in a bench stand. This Study compared this to commonly use
... Show MoreIn this research, the preparation of bidentate Schiff base was carried out via the condensation reaction of both the salicylaldehyde with 1-phenyl-2,3-dimethyl-4-amino-5-oxo-pyrazole to form the ligand (L). The mentioned ligand was used to prepare complexes with transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The resulting complexes were separated and characterized by FTIR and UV-Vis spectroscopic technique. Elemental analysis for Carbon, Hydrogen and Nitrogen elements, electronic spectra of the ligand and complexes were obtained, and the magnetic susceptibility tests were also achieved to measure the dipole moments. The molar conductivities were also measured and determination of chlorine content in the complexes and
... Show MoreMoringa oleifera L. and red pomegranate extracts have been reported to inhibit gram-positive facultative anaerobe growth and inhibit the formation of biofilm on tooth surfaces. The current study aimed to assess the antibacterial effect of M. oleifera L. and red pomegranate extracts and their combinations against Porphyromonas gingivalis. The antimicrobial sensitivity, minimum inhibition concentrations (MIC), and minimum bactericidal concentrations after treatment with the aqueous extracts of M. oleifera L. and red pomegranate as well as their combination against clinically isolated P. gingivalis were determined using agar well diffusion and two-fold serial dilution. The anti-biofilm activity of the extracts and their combination was evaluat
... Show MoreGraphene oxide (GO) was prepared from graphite (GT) with Hammer method, the GO was reduced with hydrazine hydrate to produce a reduced graphene oxide (RGO). The RGO was reacted with thiocarbohydrazide (TCH) to functionalize the RGO with 4-amino-3-symbol-1h-1, 2, 4-triazol-5 (4H) –thion group and to obtain (RGOT). All the prepared nanomaterial and the product of the functionalization RGOT were characterized with Fourier transformer infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis. RGOT mixed with ultrasonic device at different pH values of phosphate buffer solution (PBS), the mixture used to modifying a screen printed carbon electrodes SPCE and with cyclic voltammetry the sensitivity of selectivity of the new modifying elect
... Show MoreNi2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a phase of nickel oxide with Nano structure. The synthesized Ni2O3 will be useful in manufacturng electrodes materials f
... Show MoreThe coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are cal
... Show More