Complexes ofCo(ll),Cu(||),Ni(||),pt(|| ),and pd(||) with N3O-chelating Ligand Incorporating Azo and Shiff Base Moieties ;synthesis, spectroscopic ,Thermal Decomposition Theoretical
This research included the preparation of 2-mercaptobenzoxazole (N1) by the reaction of ortho-aminophenol with carbon disulfide in an alcoholic potassium hydroxide solution. The 2-mercapto benzoxazole (N1) was then treated with hydrazine to obtain the 2-hydrazino benzoxazole (N2). A number of hydrazones (N3-N5) were prepared through the reaction of N2 with different benzaldehydes. The compound (N6) was also prepared whereby the ring closing of hydrazone (N3) using chloroacetylchloride, while the compound (N7) was prepared by treating 2-hydrazino benzoxazole with acetylacetone. When the compound (N1) was treated with formaldehyde, it afforded the compound (N8). Also, the N9 was obtained from the reaction of N1 with chloroacetic acid in th
... Show MoreThree Schiff bases from Benzaldehyde and Salicylaldehyde have been synthesized (A, 1and 2) and two of them (1and 2) have been tested for anti-inflammatory activity. The p-aminobenzene sulfonamide has been synthesized from acetanilide through the addition of excess chlorosulfonic acid then concentrated ammonia solution; Schiff base of this derivative (2) exhibited good level of activity against egg-white induced edema in rat hind paw, while the other tested derivative exhibited no activity.
Key words: Schiff bases, sulfonamide derivatives, salicylaldehyde
In this work, novel compounds of hydrazones derived from (2,4-dinitrophenyl) hydrazine were synthesized. Benzamides derivatives and sulfonamides derivatives were prepared from p-amino benzaldehyde. Then these compounds were condensed with (2,4-dinitrophenyl) hydrazine through Imine bond formation to give hydrazones compounds. The compounds were characterized using FT-IR (IR Affinity-1) spectrometer, and 1HNMR analyses. The majority of the compounds have a moderate antimicrobial activity against “Gram-positive bacteria staphylococcus Aureus, and staphylococcus epidermidis, Gram-negative bacteria Escherichia coli, and Klebsiella pneumoniae, and fungi species Candida albicans” using concentrations of 250 µg\ml.
in this paper, we study and investigate a simple donor-acceptor model for charge transfer formation using a quantum transition theory. The transfer parameters which enhanced the charge transfer and the rate of the charge transfer have been calculated. Then, we study the net charge transfer through interface of Cu/F8 contact devices and evaluate all transfer coefficients. The charge transfer rate of transfer processes is found to be dominated in the low orientation free energy and increased a little in decreased potential at interface comparison to the high potential at interface. The increased transition energy results in increasing the orientation of Cu to F8. The transfer in the system was more active when the system has large driving for
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Thin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
Films of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show More