Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was adopted, which is considered a challenge for researchers because it includes different age groups. Many diseases, and the results obtained by the system were 96% accurate.
The research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreThe mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumping performance of the heart, the distribution of stress and strain that characterize regional ventricular function and change in cell biology must be known. The mechanics of the equatorial region of the left, ventricle was modeled by a thick-walled cylinder. The tangential (circumferential) stress, radial stress and longitudinal stress in the wall of the heart have been calculated. There are also significant torsional shear in the wall during b
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show MoreVolleyball is one of the sports that require physical and skill abilities thus many teaching models appeared to teach these abilities like group investigation model. The research aimed at identifying the effect of group investigation model on learning underarm and overhead passing in volleyball. The researchers hypothesized statistical differences between pre and posttests in learning underarm and overhead passing in volleyball as well as differences in posttests of controlling and experimental groups in learning underarm and overhead passing in volleyball. The researcher used the experimental method on (30) second year female students of physical education and sport sciences college/ university of Baghdad. Group investigation model was app
... Show MoreThis research aims to underscore the significance of women's emotional intelligence in enhancing the effectiveness of the Board of Directors, a crucial component of internal governance, particularly during crises. Despite strides made in recent decades in appointing women to senior roles in government, business, and education, challenges persist in improving women's leadership opportunities, especially in developing countries. The study utilizes statistical methods, including Pearson's correlation, to analyze the relationships between variables within a sample of banks listed on the Iraqi securities market, comparing periods before and during the COVID-19 pandemic (2019 and 2020). The goal is to measure the impact of female emotiona
... Show More