A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The total number of grids is (5919732) in the geological model. CPI (computer-processed interpretation) for 7 wells contain (facies, porosity, water saturation, and NTG) was imported to Petrel 2016 software. Facies log was upscaled and distributed along the 3D grid. Truncated Gaussian with trend method was used to distribute the facies taking into account the conceptual facies model of the Mishrif formation. The result shows that the trend of sedimentation suggests a retrogradation pattern from NW to SE. Facies1 (Reservoir), dominated by Limestone brown to light brown, with oil shows has good distribution within the area and thinning towards the NW. The petrophysical properties (porosity, water saturation, NTG, and permeability) were distributed using the Sequential Gaussian Simulation (SIS) method and the facies model as a guide for distribution. The results show that petrophysical properties enhanced in the southeast area, representing the reef region compared to the northwest side of the study area. Unit Mishrif B had the highest porosity value and lower water saturation value along the entire field. While the units Mishrif B1, B2, and B3 show a gradual decrease in reservoir properties towards the field's southeast side. The results also show that the conceptual facies model has great benefit in constructing the 3D geological model, reflecting the geological knowledge used to correctly distribute the reservoir properties (porosity and water saturation).
The aim of this paper is to describe an epidemic model when two SI-Type of diseases are transmitted vertically as well as horizontally through one population. The population contains two subclasses: susceptible and infectious, while the infectious are divided into three subgroups: Those infected by AIDS disease, HCV disease, and by both diseases. A nonlinear mathematical model for AIDS and HCV diseases is Suggested and analyzed. Both local and global stability for each feasible equilibrium point are determined theoretically by using the stability theory of differential equations, Routh-Hurwitz and Gershgorin theorem. Moreover, the numerical simulation was carried out on the model parameters in order to determine their impact on the disease
... Show MorePhysical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.
Silymarin, a flavolignans from seeds of ‘milk thistle’ “Silybum marianum†has been widely used from ancient times because of its excellent hepatoprotective action. It has been used clinically to treat liver disorders including acute and chronic viral hepatitis, toxin/drug-induced hepatitis and cirrhosis and alcoholic liver disease. The efficacy and dose-response effect of silymarin (125, 250 and 500 mg/kg) were assessed using egg albumin-induced paw edema in rats as a model of acute inflammation. In this model, 56 rats were used and allocated into 7 subgroups each containing 8 rats. All treatments were given intraperitonealy 30 minutes before induction of inflammation by egg albumin and then the increase
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
This study aims to estimate the accuracy of digital elevation models (DEM) which are created with exploitation of open source Google Earth data and comparing with the widely available DEM datasets, Shuttle Radar Topography Mission (SRTM), version 3, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. The GPS technique is used in this study to produce digital elevation raster with a high level of accuracy, as reference raster, compared to the DEM datasets. Baghdad University, Al Jadriya campus, is selected as a study area. Besides, 151 reference points were created within the study area to evaluate the results based on the values of RMS.Furthermore, th
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
The Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i