This study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods produce an initial description, which is then contextually, and refined using modern models. Preliminary estimates indicate that this approach could reduce the initial computational cost by up to 20% compared to relying entirely on deep models while maintaining high accuracy. The study recommends further research to develop effective coordination mechanisms between traditional and modern methods and to move to the experimental validation phase of the hybrid model in preparation for its application in environments that require a balance between speed and accuracy, such as real-time computer vision applications.
Providing stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show MoreOne of the main aims of Metrical Phonology Theory (MTT) is to provide the stress of poetry on the syllable, the foot, and the phonological word levels. Analyzing poetry embodies one of the most prominent and controversial metrical issues as the subsumed number and types of syllables, feet, and meters are balanced compared to other literary texts. The MTT saw the light during the late seventies (1975) and (1977) by Liberman and Prince, who produced it as part of non-linear phonology. Its roots originated in prosody, which studies poetic meter and versification. The basis of the metrical analysis is the prosodic analysis developed in London by Firth and his students in 1950. This study aims to identify the values of five metri
... Show MoreProviding stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show MoreAbstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show MoreWith the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreThe sediments of the Hartha Formation were deposited during the Upper Campanian- Maastrichtian cycle. Due to the importance of this sequence in terms of stratification and economics in the oil industry, it has been focused on in this study. The present study includes three oil fields in central of Iraq within the Mesopotaminan Zone, East Baghdad, Balad and Kifl oil fields. This study was accomplished by describing 190 thin sections and interpreting the response of the available well logging data. Seven major microfacies were diagnosed in the Hartha succession at studied oil fields, they are; Orbitoidal wackestone - packstone, Orbitoidal and miliolids wackestone, Rotaliidae and Siderolites with echinodermata wackestone - packstone,
... Show MoreThis article is an endeavour to highlight the relationship between social media and language evolution. It reviews the current theoretical efforts on communication and language change. The descriptive design, which is theoretically based on technological determision, is used. The assumption behind this review is that the social media plays a significant role in language evolution. Moreover, different platforms of social media are characterized by being the easiest and fastest means of communication. It concludes that the current theoretical efforts have paid much attention to the relationship between social media and language evolution. Such efforts have highlighted the fact that social media platforms are awash with a lot of acronyms, cybe
... Show More