Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application
...Show More Authors
Anew Solar concentrator have been designed in this paper, this concentrators Were based on the total internal reflection in a prism, the prism angles has been calculated by depending on the solar incident ray angle in baghdad for a year. The optical design consist ofa triangular presume, Where the solar cells on one side of the prism Wh?le the prism head towered the south. The results show that there is an increasing in the solar ray concentrators and the cell area is reduced.
In this work, a convex lens concentrating solar collector is designed and manufactured locally by using 10 convex lenses (concentrator) of a diameter 10cm and one Copper absorber tube of a diameter 12.5mm and 1mm in thickness 1m length. Two axes manual Tracking system also constructed to track the sun continuously in two directions. The experiments are made on 17th of May 2015 in climatic conditions of Baghdad. The experimental data are fed to a computer program to solve the thermal performing equation, to find efficiency and actual useful energy. Then this data is used in numerical CFD software for three different absorber diameters (12.5 mm, 18.75 mm and 25 mm). From the results that obtained the maximum the
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show MoreStudy of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
Microbial water disinfection with UV rays is a universal technology. Disinfection is a method used to treat drinking water. This can be accomplished using physical and/or chemical processes. Physical Methods: Heating and UV rays are two main methods - UV rays to destroy cells and kill bacteria. The physical process generally gives drinking water an instant purification without producing harmful substances. However, there is no pollution in the water to ensure continuous cleaning. This study’s primary goal is to obtain environmentally safe drinking water in situations of water shortages and homes that lack clean water. Therefore, resort to appropriate home treatment. Therefore, an ex
Gold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show More